Łączność

Suma liczb progresji. Postęp algebraiczny. Postęp arytmetyczny. krótko o najważniejszej sprawie

Koncepcja ciągu liczbowego zakłada, że ​​każdej liczbie naturalnej odpowiada pewna wartość rzeczywista. Taka seria liczb może być dowolna lub mieć określone właściwości - progresję. W tym drugim przypadku każdy kolejny element (element) ciągu można obliczyć na podstawie poprzedniego.

Postęp arytmetyczny– ciąg wartości liczbowych, w którym sąsiadujące z nim elementy różnią się od siebie tą samą liczbą (wszystkie elementy szeregu, począwszy od drugiego, mają podobną właściwość). Liczba ta – różnica między wyrazem poprzednim i kolejnym – jest stała i nazywana jest różnicą progresji.

Różnica w postępie: definicja

Rozważmy ciąg składający się z j wartości A = a(1), a(2), a(3), a(4) ... a(j), j należy do zbioru liczb naturalnych N. Arytmetyka progresja według definicji to ciąg, w którym a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = re. Wartość d jest pożądaną różnicą tego postępu.

d = a(j) – a(j-1).

Atrakcja:

  • Postęp rosnący, w którym to przypadku d > 0. Przykład: 4, 8, 12, 16, 20, ...
  • Postęp malejący, następnie d< 0. Пример: 18, 13, 8, 3, -2, …

Progresja różnicowa i jej elementy arbitralne

Jeżeli znane są 2 dowolne wyrazy ciągu (i-ty, k-ty), to różnicę dla danego ciągu można wyznaczyć na podstawie zależności:

a(i) = a(k) + (i – k)*d, co oznacza d = (a(i) – a(k))/(i-k).

Różnica w progresji i jej pierwszym terminie

To wyrażenie pomoże określić nieznaną wartość tylko w przypadkach, gdy znany jest numer elementu sekwencji.

Różnica progresji i jej suma

Suma progresji jest sumą jej warunków. Aby obliczyć całkowitą wartość jego pierwszych j elementów, należy skorzystać z odpowiedniego wzoru:

S(j) =((a(1) + a(j))/2)*j, ale ponieważ a(j) = a(1) + d(j – 1), wtedy S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a ust. 1 + d(– 1))/2)*j.

Usiądźmy więc i zacznijmy pisać liczby. Na przykład:
Możesz wpisać dowolne liczby, a może być ich tyle, ile chcesz (w naszym przypadku są). Nieważne, ile liczb zapiszemy, zawsze możemy powiedzieć, która jest pierwsza, która druga i tak dalej, aż do ostatniej, czyli możemy je policzyć. Oto przykład ciągu liczbowego:

Sekwencja numerów
Na przykład dla naszej sekwencji:

Przypisany numer jest specyficzny tylko dla jednego numeru w sekwencji. Innymi słowy, w sekwencji nie ma trzech sekund. Druga liczba (podobnie jak ta) jest zawsze taka sama.
Liczbę zawierającą liczbę nazywamy th wyrazem ciągu.

Zwykle całą sekwencję nazywamy jakąś literą (na przykład), a każdy element tej sekwencji to ta sama litera z indeksem równym numerowi tego elementu: .

W naszym przypadku:

Powiedzmy, że mamy sekwencja liczb, w którym różnica między sąsiednimi liczbami jest taka sama i równa.
Na przykład:

itp.
Ten ciąg liczb nazywany jest postępem arytmetycznym.
Termin „postęp” został wprowadzony przez rzymskiego autora Boecjusza już w VI wieku i był rozumiany szerzej jako nieskończony ciąg liczbowy. Nazwa „arytmetyka” została przeniesiona z teorii proporcji ciągłych, którą studiowali starożytni Grecy.

Jest to ciąg liczb, którego każdy element jest równy poprzedniemu dodanemu do tej samej liczby. Liczba ta nazywana jest różnicą postępu arytmetycznego i jest oznaczona.

Spróbuj określić, które ciągi liczbowe są ciągiem arytmetycznym, a które nie:

A)
B)
C)
D)

Rozumiem? Porównajmy nasze odpowiedzi:
Jest postęp arytmetyczny - b, c.
Nie jest postęp arytmetyczny - a, d.

Wróćmy do zadanego ciągu () i spróbujmy znaleźć wartość jego dziesiątego wyrazu. Istnieje dwa sposób, aby to znaleźć.

1. Metoda

Numer progresji możemy dodawać do poprzedniej wartości, aż dotrzemy do V wyrazu progresji. Dobrze, że nie mamy zbyt wiele do podsumowania – tylko trzy wartości:

Zatem termin opisywanego postępu arytmetycznego jest równy.

2. Metoda

Co by było, gdybyśmy musieli znaleźć wartość th wyrazu progresji? Sumowanie zajęłoby nam ponad godzinę i nie jest faktem, że przy dodawaniu liczb nie popełnialibyśmy błędów.
Oczywiście matematycy wymyślili sposób, dzięki któremu nie jest konieczne dodawanie różnicy postępu arytmetycznego do poprzedniej wartości. Przyjrzyj się bliżej narysowanemu obrazkowi... Z pewnością zauważyłeś już pewien wzór, a mianowicie:

Zobaczmy na przykład, z czego składa się wartość V wyrazu tego ciągu arytmetycznego:


Innymi słowy:

Spróbuj w ten sposób samodzielnie znaleźć wartość członka danego ciągu arytmetycznego.

Czy obliczyłeś? Porównaj swoje notatki z odpowiedzią:

Zauważ, że otrzymałeś dokładnie tę samą liczbę, co w poprzedniej metodzie, gdy do poprzedniej wartości dodaliśmy po kolei wyrazy ciągu arytmetycznego.
Spróbujmy „odpersonalizować” tę formułę - sformułujmy ją ogólnie i otrzymamy:

Równanie postępu arytmetycznego.

Postęp arytmetyczny może być rosnący lub malejący.

Wzrastający- progresje, w których każda kolejna wartość wyrazów jest większa od poprzedniej.
Na przykład:

Malejąco- progresje, w których każda kolejna wartość wyrazów jest mniejsza od poprzedniej.
Na przykład:

Wyprowadzony wzór jest używany do obliczania wyrazów zarówno rosnących, jak i malejących ciągu arytmetycznego.
Sprawdźmy to w praktyce.
Dany jest postęp arytmetyczny składający się z następujących liczb: Sprawdźmy, jaka będzie liczba th tego ciągu arytmetycznego, jeśli do jej obliczenia skorzystamy z naszego wzoru:


Od tego czasu:

Jesteśmy zatem przekonani, że wzór działa zarówno w malejącym, jak i rosnącym postępie arytmetycznym.
Spróbuj samodzielnie znaleźć th i th wyraz tego ciągu arytmetycznego.

Porównajmy wyniki:

Właściwość postępu arytmetycznego

Skomplikujmy problem - wyprowadzimy własność postępu arytmetycznego.
Powiedzmy, że mamy następujący warunek:
- postęp arytmetyczny, znajdź wartość.
Spokojnie, mówisz i zaczynasz liczyć według znanego już wzoru:

Niech więc:

Całkowita racja. Okazuje się, że najpierw znajdujemy, potem dodajemy do pierwszej liczby i otrzymujemy to, czego szukamy. Jeśli postęp jest reprezentowany przez małe wartości, to nie ma w tym nic skomplikowanego, ale co jeśli w warunku podane zostaną liczby? Zgadzam się, istnieje możliwość popełnienia błędu w obliczeniach.
Zastanów się teraz, czy można rozwiązać to zadanie w jednym kroku, stosując dowolną formułę? Oczywiście, że tak i właśnie to postaramy się teraz przedstawić.

Oznaczmy wymagany wyraz ciągu arytmetycznego, gdyż wzór na jego znalezienie jest nam znany - jest to ten sam wzór, który wyprowadziliśmy na początku:
, Następnie:

  • poprzedni termin progresji to:
  • kolejny wyraz progresji to:

Podsumujmy poprzednie i kolejne terminy progresji:

Okazuje się, że sumą poprzednich i kolejnych wyrazów progresji jest podwójna wartość członu progresji znajdującego się pomiędzy nimi. Innymi słowy, aby znaleźć wartość składnika progresji ze znanymi wartościami poprzednimi i kolejnymi, należy je dodać i podzielić przez.

Zgadza się, mamy ten sam numer. Zabezpieczmy materiał. Oblicz wartość progresji samodzielnie, nie jest to wcale trudne.

Dobrze zrobiony! O progresji wiesz prawie wszystko! Pozostaje znaleźć tylko jedną formułę, którą według legendy z łatwością wydedukował jeden z największych matematyków wszechczasów, „król matematyków” - Karl Gauss...

Kiedy Carl Gauss miał 9 lat, nauczyciel, zajęty sprawdzaniem prac uczniów w innych klasach, postawił na zajęciach następujące zadanie: „Oblicz sumę wszystkich liczb naturalnych od do (według innych źródeł do) włącznie”. Wyobraźcie sobie zdziwienie nauczyciela, gdy jeden z jego uczniów (był to Karl Gauss) minutę później podał poprawną odpowiedź na zadanie, podczas gdy większość kolegów śmiałka po długich obliczeniach otrzymała błędny wynik…

Młody Carl Gauss zauważył pewną prawidłowość, którą i Ty możesz łatwo zauważyć.
Załóżmy, że mamy postęp arytmetyczny składający się z -tych wyrazów: Musimy znaleźć sumę tych wyrazów postępu arytmetycznego. Oczywiście możemy ręcznie zsumować wszystkie wartości, ale co jeśli zadanie wymaga znalezienia sumy jej wyrazów, tak jak szukał Gauss?

Przedstawmy dany nam postęp. Przyjrzyj się bliżej wyróżnionym liczbom i spróbuj wykonać na nich różne operacje matematyczne.


Próbowałeś tego? Co zauważyłeś? Prawidłowy! Ich sumy są równe


A teraz powiedz mi, ile takich par jest w sumie w podanej nam progresji? Oczywiście dokładnie połowa wszystkich liczb.
Z faktu, że suma dwóch wyrazów ciągu arytmetycznego jest równa i pary podobne są równe, otrzymujemy, że suma całkowita jest równa:
.
Zatem wzór na sumę pierwszych wyrazów dowolnego postępu arytmetycznego będzie następujący:

W niektórych problemach nie znamy terminu „th”, ale znamy różnicę w postępie. Spróbuj zastąpić wzór tego wyrazu wzorem na sumę.
Co dostałeś?

Dobrze zrobiony! Wróćmy teraz do problemu, który został zadany Carlowi Gaussowi: obliczcie sami, jaka jest suma liczb zaczynających się od th, a suma liczb zaczynających się od th.

Ile dostałeś?
Gauss stwierdził, że suma wyrazów jest równa i suma wyrazów. Czy tak zdecydowałeś?

W rzeczywistości wzór na sumę wyrazów postępu arytmetycznego został udowodniony przez starożytnego greckiego naukowca Diofantusa już w III wieku i przez cały ten czas dowcipni ludzie w pełni korzystali z właściwości postępu arytmetycznego.
Wyobraź sobie na przykład Starożytny Egipt i największy projekt budowlany tamtych czasów - budowa piramidy... Na zdjęciu jedna jej strona.

Gdzie tu jest postęp, mówisz? Przyjrzyj się uważnie i znajdź wzór w liczbie bloków piasku w każdym rzędzie ściany piramidy.


Dlaczego nie postęp arytmetyczny? Oblicz, ile bloków potrzeba do zbudowania jednej ściany, jeśli u podstawy ułożone zostaną cegły blokowe. Mam nadzieję, że nie będziesz liczyć, przesuwając palcem po monitorze, pamiętasz ostatnią formułę i wszystko, co mówiliśmy o postępie arytmetycznym?

W tym przypadku progresja wygląda następująco: .
Różnica postępu arytmetycznego.
Liczba wyrazów postępu arytmetycznego.
Podstawmy nasze dane do ostatnich wzorów (obliczmy liczbę bloków na 2 sposoby).

Metoda 1.

Metoda 2.

A teraz możesz obliczyć na monitorze: porównaj uzyskane wartości z liczbą bloków znajdujących się w naszej piramidzie. Rozumiem? Dobra robota, opanowałeś sumę n-tych wyrazów ciągu arytmetycznego.
Oczywiście nie można zbudować piramidy z klocków u podstawy, ale z? Spróbuj obliczyć, ile cegieł piaskowych potrzeba do zbudowania ściany w tym stanie.
Czy udało Ci się?
Prawidłowa odpowiedź to bloki:

Szkolenie

Zadania:

  1. Masza robi formę na lato. Z każdym dniem zwiększa liczbę przysiadów o. Ile razy Masza będzie robić przysiady w ciągu tygodnia, jeśli robiła przysiady na pierwszej sesji treningowej?
  2. Jaka jest suma wszystkich liczb nieparzystych zawartych w.
  3. Podczas przechowywania kłód loggery układają je w taki sposób, że każda górna warstwa zawiera o jedną kłodę mniej niż poprzednia. Ile kłód znajduje się w jednym murze, jeśli fundamentem muru są kłody?

Odpowiedzi:

  1. Zdefiniujmy parametry postępu arytmetycznego. W tym przypadku
    (tygodnie = dni).

    Odpowiedź: Za dwa tygodnie Masza powinna robić przysiady raz dziennie.

  2. Pierwszy liczba nieparzysta, ostatni numer.
    Różnica postępu arytmetycznego.
    Liczba liczb nieparzystych jest równa połowie, sprawdźmy jednak ten fakt korzystając ze wzoru na znalezienie VII wyrazu ciągu arytmetycznego:

    Liczby zawierają liczby nieparzyste.
    Podstawmy dostępne dane do wzoru:

    Odpowiedź: Suma wszystkich liczb nieparzystych zawartych w jest równa.

  3. Przypomnijmy sobie problem z piramidami. W naszym przypadku a , ponieważ każda górna warstwa jest zmniejszona o jeden log, to w sumie mamy kilka warstw.
    Podstawiamy dane do wzoru:

    Odpowiedź: W murze znajdują się kłody.

Podsumujmy to

  1. - ciąg liczb, w którym różnica między sąsiednimi liczbami jest taka sama i równa. Może rosnąć lub maleć.
  2. Znalezienie formuły Piąty wyraz ciągu arytmetycznego zapisuje się wzorem - , gdzie jest liczba liczb w ciągu.
  3. Własność członków ciągu arytmetycznego- - gdzie jest liczbą numerów w toku.
  4. Suma wyrazów postępu arytmetycznego można znaleźć na dwa sposoby:

    , gdzie jest liczbą wartości.

PROGRESJA ARYTMETYCZNA. ŚREDNI POZIOM

Sekwencja numerów

Usiądźmy i zacznijmy pisać liczby. Na przykład:

Możesz wpisać dowolne liczby, a może być ich tyle, ile chcesz. Ale zawsze możemy powiedzieć, który jest pierwszy, który drugi i tak dalej, to znaczy możemy je policzyć. To jest przykład ciągu liczbowego.

Sekwencja numerów to zbiór liczb, z których każdej można przypisać unikalny numer.

Innymi słowy, każdą liczbę można powiązać z pewną liczbą naturalną i to niepowtarzalną. I nie przypiszemy tego numeru żadnemu innemu numerowi z tego zestawu.

Liczbę z liczbą nazywamy th członkiem ciągu.

Zwykle całą sekwencję nazywamy jakąś literą (na przykład), a każdy element tej sekwencji to ta sama litera z indeksem równym numerowi tego elementu: .

Jest to bardzo wygodne, jeśli th-ty wyraz ciągu można określić za pomocą jakiegoś wzoru. Na przykład formuła

ustawia kolejność:

A formuła jest następującą sekwencją:

Na przykład postęp arytmetyczny jest ciągiem (pierwszy wyraz jest tutaj równy, a różnica jest). Lub (, różnica).

formuła n-tego terminu

Nazywamy formułą rekurencyjną, w której aby znaleźć th wyraz, trzeba znać poprzednie lub kilka poprzednich:

Aby znaleźć na przykład dziewiąty wyraz progresji za pomocą tego wzoru, będziemy musieli obliczyć poprzednie dziewięć. Na przykład pozwól. Następnie:

Czy teraz jest jasne, jaka jest formuła?

W każdym wierszu dodajemy, pomnożyliśmy przez jakąś liczbę. Który? Bardzo proste: jest to numer bieżącego członka minus:

Teraz jest o wiele wygodniej, prawda? Sprawdzamy:

Zdecyduj sam:

W postępie arytmetycznym znajdź wzór na n-ty wyraz i znajdź setny wyraz.

Rozwiązanie:

Pierwszy wyraz jest równy. Jaka jest różnica? Oto co:

(Dlatego nazywa się to różnicą, bo jest równe różnicy kolejnych wyrazów postępu).

Zatem formuła:

Wtedy setny wyraz jest równy:

Jaka jest suma wszystkich liczb naturalnych od do?

Według legendy wielki matematyk Carl Gauss już jako 9-letni chłopiec obliczył tę kwotę w kilka minut. Zauważył, że suma pierwszej i ostatniej liczby jest równa, suma drugiej i przedostatniej jest taka sama, suma trzeciej i trzeciej od końca jest taka sama i tak dalej. Ile jest w sumie takich par? Zgadza się, to znaczy dokładnie połowa liczby wszystkich liczb. Więc,

Ogólny wzór na sumę pierwszych wyrazów dowolnego postępu arytmetycznego będzie następujący:

Przykład:
Znajdź sumę wszystkich dwucyfrowych wielokrotności.

Rozwiązanie:

Pierwsza taka liczba to ta. Każdą kolejną liczbę uzyskujemy poprzez dodanie do poprzedniej liczby. Zatem interesujące nas liczby tworzą ciąg arytmetyczny z pierwszym wyrazem i różnicą.

Formuła wyrazu VII dla tej progresji:

Ile wyrazów jest w progresji, jeśli wszystkie muszą być dwucyfrowe?

Bardzo łatwe: .

Ostatni termin progresji będzie równy. Następnie suma:

Odpowiedź: .

Teraz zdecyduj sam:

  1. Każdego dnia sportowiec przebiega więcej metrów niż poprzedniego dnia. Ile kilometrów przebiegnie w ciągu tygodnia, jeśli pierwszego dnia przebiegł km?
  2. Rowerzysta pokonuje każdego dnia więcej kilometrów niż poprzedniego dnia. Pierwszego dnia przejechał km. Ile dni musi podróżować, aby pokonać kilometr? Ile kilometrów przejedzie ostatniego dnia swojej podróży?
  3. Cena lodówki w sklepie spada co roku o tę samą kwotę. Oblicz, o ile cena lodówki spadała każdego roku, jeśli wystawiona na sprzedaż za ruble, sześć lat później została sprzedana za ruble.

Odpowiedzi:

  1. Najważniejsze jest tu rozpoznanie postępu arytmetycznego i określenie jego parametrów. W tym przypadku (tygodnie = dni). Musisz określić sumę pierwszych wyrazów tej progresji:
    .
    Odpowiedź:
  2. Tutaj jest podane: , należy znaleźć.
    Oczywiście musisz użyć tego samego wzoru na sumę, co w poprzednim zadaniu:
    .
    Zastąp wartości:

    Katalog główny najwyraźniej nie pasuje, więc odpowiedź brzmi.
    Obliczmy drogę przebytą w ciągu ostatniego dnia, korzystając ze wzoru na wyraz:
    (km).
    Odpowiedź:

  3. Dany: . Znajdować: .
    To nie może być prostsze:
    (pocierać).
    Odpowiedź:

PROGRESJA ARYTMETYCZNA. KRÓTKO O NAJWAŻNIEJSZYCH RZECZACH

Jest to ciąg liczb, w którym różnica między sąsiednimi liczbami jest taka sama i równa.

Postęp arytmetyczny może być rosnący () i malejący ().

Na przykład:

Wzór na znalezienie n-tego wyrazu ciągu arytmetycznego

jest zapisywany wzorem, gdzie jest liczbą numerów w toku.

Własność członków ciągu arytmetycznego

Pozwala łatwo znaleźć wyraz ciągu, jeśli znane są wyrazy sąsiadujące z nim - gdzie jest liczba liczb w ciągu.

Suma wyrazów postępu arytmetycznego

Istnieją dwa sposoby znalezienia kwoty:

Gdzie jest liczba wartości.

Gdzie jest liczba wartości.

POZOSTAŁE 2/3 ARTYKUŁÓW DOSTĘPNE JEST TYLKO DLA MĄDRYCH STUDENTÓW!

Zostań uczniem YouClever,

Przygotuj się do Unified State Exam lub Unified State Exam z matematyki w cenie „filiżanki kawy miesięcznie”,

A także zyskaj nieograniczony dostęp do podręcznika „YouClever”, programu przygotowawczego „100gia” (książka Solver), nieograniczonej wersji próbnej Unified State Exam i Unified State Exam, 6000 problemów z analizą rozwiązań oraz innych usług YouClever i 100gia.

Suma postępu arytmetycznego.

Suma postępu arytmetycznego jest rzeczą prostą. Zarówno w znaczeniu, jak i formule. Ale jest wiele zadań na ten temat. Od podstawowego po całkiem solidny.

Najpierw zrozumiemy znaczenie i formułę kwoty. I wtedy podejmiemy decyzję. Dla własnej przyjemności.) Znaczenie kwoty jest proste jak muu. Aby znaleźć sumę ciągu arytmetycznego, wystarczy dokładnie dodać wszystkie jego wyrazy. Jeśli tych terminów jest niewiele, możesz dodać je bez żadnych formuł. Ale jeśli jest tego dużo, albo bardzo dużo... dodawanie jest denerwujące.) W tym przypadku na ratunek przychodzi formuła.

Wzór na kwotę jest prosty:

Zastanówmy się, jakie litery są zawarte we wzorze. To wiele wyjaśni.

S n - suma postępu arytmetycznego. Wynik dodania wszyscy członkowie, z Pierwszy Przez ostatni. To jest ważne. Dokładnie się sumują Wszystko członków z rzędu, bez pomijania i pomijania. A dokładnie zaczynając od Pierwszy. W przypadku problemów takich jak znalezienie sumy wyrazów trzeciego i ósmego lub sumy wyrazów od piątego do dwudziestego bezpośrednie zastosowanie wzoru rozczaruje.)

1 - Pierwszy członek progresji. Tutaj wszystko jest jasne, to proste Pierwszy Numer wiersza.

jakiś- ostatni członek progresji. Ostatni numer serii. Niezbyt znana nazwa, ale zastosowana do kwoty jest bardzo odpowiednia. Wtedy zobaczysz sam.

N - numer ostatniego członka. Ważne jest, aby zrozumieć, że we wzorze jest to liczba pokrywa się z liczbą dodanych terminów.

Zdefiniujmy pojęcie ostatni członek jakiś. Podchwytliwe pytanie: który członek będzie ostatni jeśli podano nieskończony postęp arytmetyczny?)

Aby odpowiedzieć pewnie, trzeba zrozumieć elementarne znaczenie postępu arytmetycznego i… uważnie przeczytać zadanie!)

W zadaniu znalezienia sumy ciągu arytmetycznego zawsze pojawia się ostatni wyraz (bezpośrednio lub pośrednio), które należy ograniczyć. W przeciwnym razie ostateczna, konkretna kwota po prostu nie istnieje. Dla rozwiązania nie ma znaczenia, czy dany jest postęp: skończony czy nieskończony. Nie ma znaczenia, jak to zostanie podane: ciąg liczb, czy wzór na n-ty wyraz.

Najważniejsze jest zrozumienie, że formuła działa od pierwszego wyrazu progresji do wyrazu z liczbą N. Właściwie pełna nazwa formuły wygląda następująco: suma pierwszych n wyrazów ciągu arytmetycznego. Liczba tych pierwszych członków, tj. N, zależy wyłącznie od zadania. W zadaniu wszystkie te cenne informacje są często szyfrowane, tak… Ale nieważne, w poniższych przykładach ujawniamy te tajemnice.)

Przykłady zadań na sumie ciągu arytmetycznego.

Na początek przydatne informacje:

Główna trudność w zadaniach polegających na sumie postępu arytmetycznego polega na prawidłowym określeniu elementów wzoru.

Autorzy zadań szyfrują te właśnie elementy z nieograniczoną wyobraźnią.) Najważniejsze tutaj to nie bać się. Rozumiejąc istotę elementów, wystarczy je po prostu rozszyfrować. Przyjrzyjmy się szczegółowo kilku przykładom. Zacznijmy od zadania opartego na prawdziwym GIA.

1. Postęp arytmetyczny jest określony przez warunek: a n = 2n-3,5. Znajdź sumę pierwszych 10 wyrazów.

Dobra robota. Łatwe.) Co musimy wiedzieć, aby określić kwotę za pomocą wzoru? Pierwszy członek 1, ostatni termin jakiś, tak, numer ostatniego członka N.

Gdzie mogę zdobyć numer ostatniego członka? N? Tak, właśnie tam, pod warunkiem! Mówi: znajdź sumę pierwszych 10 członków. No właśnie, z jakim numerem to będzie? ostatni, dziesiąty członek?) Nie uwierzysz, jego liczba jest dziesiąta!) Dlatego zamiast jakiś Podstawimy do wzoru 10, i zamiast N- dziesięć. Powtarzam, liczba ostatniego członka pokrywa się z liczbą członków.

Pozostaje ustalić 1 I 10. Można to łatwo obliczyć, korzystając ze wzoru na n-ty wyraz podanego w opisie problemu. Nie wiesz jak to zrobić? Weź udział w poprzedniej lekcji, bez tego nie ma mowy.

1= 2 1 - 3,5 = -1,5

10=2·10 - 3,5 =16,5

S n = S 10.

Ustaliliśmy znaczenie wszystkich elementów wzoru na sumę postępu arytmetycznego. Pozostaje tylko je zastąpić i policzyć:

Otóż ​​to. Odpowiedź: 75.

Kolejne zadanie w oparciu o GIA. Trochę bardziej skomplikowane:

2. Biorąc pod uwagę postęp arytmetyczny (an), którego różnica wynosi 3,7; a1 =2,3. Znajdź sumę pierwszych 15 wyrazów.

Natychmiast zapisujemy formułę sumy:

Formuła ta pozwala nam znaleźć wartość dowolnego terminu na podstawie jego liczby. Szukamy prostego podstawienia:

za 15 = 2,3 + (15-1) 3,7 = 54,1

Pozostaje wstawić wszystkie elementy do wzoru na sumę ciągu arytmetycznego i obliczyć odpowiedź:

Odpowiedź: 423.

Nawiasem mówiąc, jeśli w formule sumy zamiast jakiś Po prostu zastępujemy wzór n-tym wyrazem i otrzymujemy:

Przedstawmy podobne i uzyskajmy nowy wzór na sumę wyrazów ciągu arytmetycznego:

Jak widać, nie jest to tutaj wymagane n-ty termin jakiś. W niektórych problemach ta formuła bardzo pomaga, tak... Pamiętasz tę formułę. Możesz też po prostu wyświetlić go we właściwym czasie, jak tutaj. W końcu zawsze trzeba pamiętać wzór na sumę i wzór na n-ty wyraz.)

Teraz zadanie w formie krótkiego szyfrowania):

3. Znajdź sumę wszystkich dodatnich liczb dwucyfrowych, które są wielokrotnościami trzech.

Wow! Ani Twój pierwszy członek, ani ostatni, ani żaden postęp... Jak żyć!?

Trzeba będzie pomyśleć z głową i wyciągnąć z warunku wszystkie elementy sumy postępu arytmetycznego. Wiemy, co to są liczby dwucyfrowe. Składają się z dwóch liczb.) Jaka będzie liczba dwucyfrowa Pierwszy? 10, prawdopodobnie.) A Ostatnia rzecz liczba dwucyfrowa? 99, oczywiście! Za nim pójdą trzycyfrowe...

Wielokrotność trzech... Hm... To są liczby podzielne przez trzy, proszę! Dziesięć nie jest podzielne przez trzy, 11 nie jest podzielne... 12... jest podzielne! Zatem coś się pojawia. Można już zapisać szereg zgodnie z warunkami zadania:

12, 15, 18, 21, ... 96, 99.

Czy ten szereg będzie postępem arytmetycznym? Z pewnością! Każdy termin różni się od poprzedniego ściśle trzema. Jeśli dodasz 2 lub 4 do terminu, powiedzmy, wynik, tj. nowa liczba nie jest już podzielna przez 3. Możesz od razu określić różnicę ciągu arytmetycznego: d = 3. Przyda się!)

Możemy więc spokojnie zapisać niektóre parametry progresji:

Jaki będzie numer? N ostatni członek? Każdy, kto uważa, że ​​99 to fatalna pomyłka... Liczby zawsze idą w rzędzie, ale nasi członkowie przeskakują powyżej trzech. Nie pasują.

Istnieją tutaj dwa rozwiązania. Jednym ze sposobów jest superpracowitość. Możesz zapisać progresję, całą serię liczb i policzyć palcem liczbę członków.) Drugi sposób jest dla myślących. Trzeba zapamiętać wzór na n-ty wyraz. Jeśli zastosujemy wzór do naszego problemu, okaże się, że 99 jest trzydziestym wyrazem progresji. Te. n = 30.

Spójrzmy na wzór na sumę postępu arytmetycznego:

Patrzymy i cieszymy się.) Wyciągnęliśmy z zestawienia problemu wszystko, co niezbędne do obliczenia kwoty:

1= 12.

30= 99.

S n = S 30.

Pozostaje tylko elementarna arytmetyka. Podstawiamy liczby do wzoru i obliczamy:

Odpowiedź: 1665

Inny rodzaj popularnej łamigłówki:

4. Biorąc pod uwagę postęp arytmetyczny:

-21,5; -20; -18,5; -17; ...

Znajdź sumę wyrazów od dwudziestego do trzydziestu czterech.

Patrzymy na wzór na kwotę i... denerwujemy się.) Wzór, przypomnę, oblicza kwotę od pierwszego członek. A w zadaniu musisz obliczyć sumę od dwudziestego... Formuła nie będzie działać.

Można oczywiście całą progresję rozpisać w serii i dodać wyrazy od 20 do 34. Ale… to jakoś głupie i zajmuje dużo czasu, prawda?)

Istnieje bardziej eleganckie rozwiązanie. Podzielmy naszą serię na dwie części. Pierwsza część będzie od pierwszego semestru do XIX. Druga część - od dwudziestu do trzydziestu czterech. Oczywiste jest, że jeśli obliczymy sumę wyrazów pierwszej części S 1-19, dodajmy to do sumy wyrazów drugiej części S 20-34, otrzymujemy sumę progresji od pierwszego do trzydziestego czwartego wyrazu S 1-34. Lubię to:

S 1-19 + S 20-34 = S 1-34

Z tego widzimy, że znajdujemy sumę S 20-34 można wykonać poprzez proste odejmowanie

S 20-34 = S 1-34 - S 1-19

Uwzględniane są obie kwoty po prawej stronie od pierwszego członek, tj. standardowy wzór na sumę ma do nich całkiem zastosowanie. Zacznijmy?

Wyodrębniamy parametry progresji ze stwierdzenia problemu:

d = 1,5.

1= -21,5.

Aby obliczyć sumę pierwszych 19 i pierwszych 34 wyrazów, będziemy potrzebować 19 i 34 wyrazów. Obliczamy je korzystając ze wzoru na n-ty wyraz, jak w zadaniu 2:

19= -21,5 +(19-1) 1,5 = 5,5

34= -21,5 +(34-1) 1,5 = 28

Nic nie zostało. Od sumy 34 wyrazów odejmij sumę 19 wyrazów:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Odpowiedź: 262,5

Jedna ważna uwaga! Istnieje bardzo przydatna sztuczka, która pozwala rozwiązać ten problem. Zamiast bezpośrednich obliczeń czego potrzebujesz (S 20-34), liczyliśmy coś, co wydawałoby się nie potrzebne – S 1-19. A potem ustalili S 20-34, odrzucając niepotrzebne z pełnego wyniku. Ten rodzaj „zwodu za pomocą uszu” często ratuje cię przed niegodziwymi problemami).

Na tej lekcji przyjrzeliśmy się problemom, dla których wystarczy zrozumieć znaczenie sumy postępu arytmetycznego. Cóż, musisz znać kilka formuł.)

Praktyczne porady:

Przy rozwiązywaniu dowolnego problemu dotyczącego sumy postępu arytmetycznego zalecam natychmiastowe wypisanie dwóch głównych wzorów z tego tematu.

Wzór na n-ty wyraz:

Te formuły od razu podpowiedzą Ci, czego szukać i w jakim kierunku myśleć, aby rozwiązać problem. Pomaga.

A teraz zadania do samodzielnego rozwiązania.

5. Znajdź sumę wszystkich liczb dwucyfrowych, które nie są podzielne przez trzy.

Super?) Podpowiedź jest ukryta w notatce do zadania 4. Cóż, zadanie 3 pomoże.

6. Postęp arytmetyczny wyraża warunek: a 1 = -5,5; za n+1 = za n +0,5. Znajdź sumę pierwszych 24 wyrazów.

Niezwykłe?) To powtarzająca się formuła. Przeczytałeś o tym w poprzedniej lekcji. Nie ignoruj ​​​​linku, takie problemy często występują w Państwowej Akademii Nauk.

7. Vasya zaoszczędziła pieniądze na wakacje. Aż 4550 rubli! I postanowiłem podarować mojej ulubionej osobie (sobie) kilka dni szczęścia). Żyj pięknie, nie odmawiając sobie niczego. Wydaj 500 rubli pierwszego dnia, a każdego kolejnego dnia wydawaj o 50 rubli więcej niż poprzedni! Dopóki nie skończą się pieniądze. Ile dni szczęścia miała Wasia?

Czy to trudne?) Pomocny będzie dodatkowy wzór z zadania 2.

Odpowiedzi (w nieładzie): 7, 3240, 6.

Jeśli podoba Ci się ta strona...

Przy okazji, mam dla Ciebie jeszcze kilka ciekawych stron.)

Możesz poćwiczyć rozwiązywanie przykładów i sprawdzić swój poziom. Testowanie z natychmiastową weryfikacją. Uczmy się - z zainteresowaniem!)

Można zapoznać się z funkcjami i pochodnymi.


Tak, tak: postęp arytmetyczny to nie zabawka dla Ciebie :)

Cóż, przyjaciele, jeśli czytacie ten tekst, to wewnętrzne dowody cap mówią mi, że jeszcze nie wiecie, czym jest postęp arytmetyczny, ale naprawdę (nie, w ten sposób: DUŻO!) chcecie się tego dowiedzieć. Dlatego nie będę Was dręczyć długimi wstępami i od razu przejdę do sedna.

Najpierw kilka przykładów. Przyjrzyjmy się kilku zestawom liczb:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Co łączy wszystkie te zestawy? Na pierwszy rzut oka nic. Ale rzeczywiście coś jest. Mianowicie: każdy kolejny element różni się od poprzedniego tą samą liczbą.

Oceńcie sami. Pierwszy zestaw to po prostu kolejne liczby, a każda następna jest o jeden większa od poprzedniej. W drugim przypadku różnica między sąsiednimi liczbami wynosi już pięć, ale różnica ta jest nadal stała. W trzecim przypadku są w ogóle korzenie. Jednak $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ i $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, tj. i w tym przypadku każdy kolejny element po prostu zwiększa się o $\sqrt(2)$ (i nie bój się, że ta liczba jest irracjonalna).

Zatem: wszystkie takie ciągi nazywane są postępami arytmetycznymi. Podajmy ścisłą definicję:

Definicja. Ciąg liczb, w którym każda kolejna różni się od poprzedniej dokładnie o tę samą kwotę, nazywa się postępem arytmetycznym. Sama wielkość różnicy między liczbami nazywana jest różnicą progresji i najczęściej oznaczana jest literą $d$.

Notacja: $\left(((a)_(n)) \right)$ to sama progresja, $d$ to jej różnica.

I tylko kilka ważnych uwag. Po pierwsze, brana jest pod uwagę jedynie progresja zamówione sekwencja liczb: można je czytać ściśle w kolejności, w jakiej zostały zapisane – i nic więcej. Liczb nie można zmieniać ani zamieniać.

Po drugie, sama sekwencja może być skończona lub nieskończona. Na przykład zbiór (1; 2; 3) jest oczywiście skończonym ciągiem arytmetycznym. Ale jeśli napiszesz coś w duchu (1; 2; 3; 4; ...) - to już jest nieskończony postęp. Wielokropek po czwórce wydaje się wskazywać, że przed nami jeszcze kilka liczb. Na przykład nieskończenie wiele. :)

Chciałbym również zauważyć, że progresja może być rosnąca lub malejąca. Widzieliśmy już rosnące - ten sam zbiór (1; 2; 3; 4; ...). Oto przykłady progresji malejącej:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

OK, OK: ostatni przykład może wydawać się zbyt skomplikowany. Ale resztę, jak sądzę, rozumiesz. Dlatego wprowadzamy nowe definicje:

Definicja. Postęp arytmetyczny nazywa się:

  1. rosnący, jeśli każdy następny element jest większy od poprzedniego;
  2. zmniejsza się, jeśli wręcz przeciwnie, każdy kolejny element jest mniejszy niż poprzedni.

Ponadto istnieją tak zwane ciągi „stacjonarne” - składają się z tej samej powtarzającej się liczby. Na przykład (3; 3; 3; ...).

Pozostaje tylko jedno pytanie: jak odróżnić progresję rosnącą od malejącej? Na szczęście wszystko tutaj zależy tylko i wyłącznie od znaku liczby $d$, czyli: różnice w progresji:

  1. Jeśli $d \gt 0$, to postęp wzrasta;
  2. Jeśli $d \lt 0$, to postęp oczywiście maleje;
  3. Wreszcie mamy przypadek $d=0$ - w tym przypadku cały postęp sprowadza się do stacjonarnego ciągu identycznych liczb: (1; 1; 1; 1; ...) itd.

Spróbujmy obliczyć różnicę $d$ dla trzech podanych powyżej progresji malejących. Aby to zrobić, wystarczy wziąć dowolne dwa sąsiednie elementy (na przykład pierwszy i drugi) i odjąć liczbę po lewej stronie od liczby po prawej stronie. Będzie to wyglądać tak:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Jak widać, we wszystkich trzech przypadkach różnica faktycznie okazała się ujemna. A teraz, gdy już mniej więcej opracowaliśmy definicje, czas dowiedzieć się, jak opisuje się progresje i jakie mają właściwości.

Warunki progresji i formuła powtarzalności

Ponieważ elementów naszych ciągów nie można zamieniać miejscami, można je ponumerować:

\[\lewy(((a)_(n)) \prawy)=\lewy\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \Prawidłowy\)\]

Poszczególne elementy tego zbioru nazywane są elementami progresji. Są one oznaczone numerem: pierwszy członek, drugi członek itp.

Ponadto, jak już wiemy, sąsiednie wyrazy progresji powiązane są wzorem:

\[((a)_(n))-((a)_(n-1))=d\Strzałka w prawo ((a)_(n))=((a)_(n-1))+d \]

Krótko mówiąc, aby znaleźć $n$-ty wyraz progresji, musisz znać $n-1$-ty wyraz i różnicę $d$. Formuła ta nazywa się rekurencyjną, ponieważ za jej pomocą można znaleźć dowolną liczbę tylko znając poprzednią (a właściwie wszystkie poprzednie). Jest to bardzo niewygodne, dlatego istnieje bardziej przebiegła formuła, która redukuje wszelkie obliczenia do pierwszego członu i różnicy:

\[((a)_(n))=((a)_(1))+\lewo(n-1 \prawo)d\]

Prawdopodobnie spotkałeś się już z tą formułą. Lubią podawać to w różnego rodzaju podręcznikach i książkach z rozwiązaniami. I w każdym rozsądnym podręczniku do matematyki jest to jeden z pierwszych.

Radzę jednak trochę poćwiczyć.

Zadanie nr 1. Zapisz pierwsze trzy wyrazy ciągu arytmetycznego $\left(((a)_(n)) \right)$ jeśli $((a)_(1))=8,d=-5$.

Rozwiązanie. Znamy więc pierwszy wyraz $((a)_(1))=8$ i różnicę progresji $d=-5$. Użyjmy podanego wzoru i zamieńmy $n=1$, $n=2$ i $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Odpowiedź: (8; 3; −2)

To wszystko! Uwaga: nasz postęp maleje.

Oczywiście $n=1$ nie dało się zastąpić - pierwszy wyraz jest nam już znany. Jednak podstawiając jedność, byliśmy przekonani, że nawet dla pierwszego wyrazu nasza formuła działa. W innych przypadkach wszystko sprowadzało się do banalnej arytmetyki.

Zadanie nr 2. Zapisz pierwsze trzy wyrazy postępu arytmetycznego, jeśli jego siódmy wyraz jest równy –40, a siedemnasty wyraz jest równy –50.

Rozwiązanie. Zapiszmy warunek problemu w znany sposób:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\(\begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \Prawidłowy.\]

Umieszczam znak systemowy, ponieważ te wymagania muszą być spełnione jednocześnie. Zauważmy teraz, że jeśli odejmiemy pierwsze od drugiego równania (mamy do tego prawo, ponieważ mamy układ), otrzymamy to:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(align)\]

Tak łatwo jest znaleźć różnicę w progresji! Pozostaje tylko zastąpić znalezioną liczbę dowolnym równaniem układu. Na przykład w pierwszym:

\[\begin(macierz) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(macierz)\]

Teraz, znając pierwszy termin i różnicę, pozostaje znaleźć drugi i trzeci wyraz:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Gotowy! Problem jest rozwiązany.

Odpowiedź: (-34; -35; -36)

Zwróć uwagę na interesującą właściwość progresji, którą odkryliśmy: jeśli weźmiemy wyrazy $n$th i $m$th i odejmiemy je od siebie, otrzymamy różnicę progresji pomnożoną przez liczbę $n-m$:

\[(a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Prosta, ale bardzo przydatna właściwość, którą zdecydowanie musisz znać - z jej pomocą możesz znacznie przyspieszyć rozwiązanie wielu problemów progresyjnych. Oto wyraźny przykład:

Zadanie nr 3. Piąty wyraz ciągu arytmetycznego wynosi 8,4, a dziesiąty wyraz to 14,4. Znajdź piętnasty wyraz tego ciągu.

Rozwiązanie. Ponieważ $((a)_(5))=8,4$, $((a)_(10))=14,4$ i musimy znaleźć $((a)_(15))$, zauważamy co następuje:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Ale według warunku $((a)_(10))-((a)_(5))=14,4-8,4=6$, zatem $5d=6$, z czego mamy:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(align)\]

Odpowiedź: 20,4

To wszystko! Nie musieliśmy tworzyć żadnych układów równań i obliczać pierwszego wyrazu i różnicy - wszystko zostało rozwiązane w zaledwie kilku linijkach.

Przyjrzyjmy się teraz innemu rodzajowi problemu - poszukiwaniu negatywnych i pozytywnych terminów progresji. Nie jest tajemnicą, że jeśli progresja narasta, a jej pierwszy wyraz jest ujemny, to prędzej czy później pojawią się w niej człony pozytywne. I odwrotnie: warunki progresji malejącej prędzej czy później staną się negatywne.

Jednocześnie nie zawsze można znaleźć ten moment „od razu”, przechodząc kolejno przez elementy. Często zadania są pisane w taki sposób, że bez znajomości wzorów obliczenia zajęłyby kilka kartek papieru – po prostu zasypialibyśmy w trakcie szukania odpowiedzi. Dlatego spróbujmy rozwiązać te problemy szybciej.

Zadanie nr 4. Ile wyrazów ujemnych znajduje się w postępie arytmetycznym -38,5; −35,8; ...?

Rozwiązanie. Zatem $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, skąd natychmiast znajdujemy różnicę:

Należy pamiętać, że różnica jest dodatnia, więc progresja wzrasta. Pierwszy wyraz jest ujemny, więc rzeczywiście w pewnym momencie natkniemy się na liczby dodatnie. Pytanie tylko, kiedy to nastąpi.

Spróbujmy dowiedzieć się jak długo (tzn. do jakiej liczby naturalnej $n$) pozostaje negatywność wyrazów:

\[\begin(align) & ((a)_(n)) \lt 0\Strzałka w prawo ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \prawo. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Strzałka w prawo ((n)_(\max ))=15. \\ \end(align)\]

Ostatnia linijka wymaga wyjaśnienia. Wiemy więc, że $n \lt 15\frac(7)(27)$. Z drugiej strony zadowalają nas tylko całkowite wartości liczby (co więcej: $n\in \mathbb(N)$), zatem największą dopuszczalną liczbą jest właśnie $n=15$, a w żadnym wypadku 16 .

Zadanie nr 5. W postępie arytmetycznym $(()_(5))=-150,(()_(6))=-147$. Znajdź numer pierwszego dodatniego wyrazu tego ciągu.

Byłby to dokładnie ten sam problem, co poprzedni, ale nie znamy $((a)_(1))$. Ale znane są wyrazy sąsiednie: $((a)_(5))$ i $((a)_(6))$, więc łatwo możemy znaleźć różnicę progresji:

Ponadto spróbujmy wyrazić wyraz piąty poprzez pierwszy i różnicę za pomocą standardowego wzoru:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Teraz postępujemy analogicznie do poprzedniego zadania. Przekonajmy się, w którym momencie naszego ciągu pojawią się liczby dodatnie:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Strzałka w prawo ((n)_(\min ))=56. \\ \end(align)\]

Minimalnym rozwiązaniem całkowitym tej nierówności jest liczba 56.

Uwaga: w ostatnim zadaniu wszystko sprowadzało się do ścisłej nierówności, zatem opcja $n=55$ nam nie będzie odpowiadać.

Teraz, gdy nauczyliśmy się rozwiązywać proste problemy, przejdźmy do bardziej złożonych. Ale najpierw przeanalizujmy inną bardzo przydatną właściwość postępów arytmetycznych, która w przyszłości zaoszczędzi nam dużo czasu i nierównych komórek. :)

Średnia arytmetyczna i równe wcięcia

Rozważmy kilka kolejnych wyrazów rosnącego postępu arytmetycznego $\left(((a)_(n)) \right)$. Spróbujmy zaznaczyć je na osi liczbowej:

Warunki ciągu arytmetycznego na osi liczbowej

Specjalnie zaznaczyłem dowolne terminy $((a)_(n-3)),...,((a)_(n+3))$, a nie jakieś $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ itd. Ponieważ zasada, o której teraz opowiem, działa tak samo dla dowolnych „segmentów”.

A zasada jest bardzo prosta. Zapamiętajmy wzór powtarzający się i zapiszmy go dla wszystkich zaznaczonych terminów:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Równości te można jednak przepisać inaczej:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

No i co? Oraz fakt, że terminy $((a)_(n-1))$ i $((a)_(n+1))$ leżą w tej samej odległości od $((a)_(n)) $ . A ta odległość jest równa $d$. To samo można powiedzieć o terminach $((a)_(n-2))$ i $((a)_(n+2))$ - są one również usunięte z $((a)_(n) )$ w tej samej odległości równej 2d$. Można tak ciągnąć w nieskończoność, ale znaczenie dobrze ilustruje rysunek


Warunki progresji leżą w tej samej odległości od centrum

Co to oznacza dla nas? Oznacza to, że $((a)_(n))$ można znaleźć, jeśli znane są sąsiednie liczby:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Wyprowadziliśmy doskonałe stwierdzenie: każdy wyraz ciągu arytmetycznego jest równy średniej arytmetycznej wyrazów sąsiednich! Co więcej: możemy cofnąć się od naszego $((a)_(n))$ w lewo i w prawo nie o jeden krok, ale o $k$ kroków - a formuła nadal będzie poprawna:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Te. możemy łatwo znaleźć trochę $((a)_(150))$, jeśli znamy $((a)_(100))$ i $((a)_(200))$, ponieważ $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Na pierwszy rzut oka może się wydawać, że fakt ten nie daje nam niczego przydatnego. Jednak w praktyce wiele problemów jest specjalnie dostosowanych do stosowania średniej arytmetycznej. Spójrz:

Zadanie nr 6. Znajdź wszystkie wartości $x$, dla których liczby $-6((x)^(2))$, $x+1$ i $14+4((x)^(2))$ są kolejnymi wyrazami postęp arytmetyczny (w podanej kolejności).

Rozwiązanie. Ponieważ liczby te należą do ciągu, spełniony jest dla nich warunek średniej arytmetycznej: element centralny $x+1$ można wyrazić w postaci elementów sąsiednich:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

Wyszło klasycznie równanie kwadratowe. Odpowiedzią są jego pierwiastki: $x=2$ i $x=-3$.

Odpowiedź: −3; 2.

Zadanie nr 7. Znajdź wartości $$, dla których liczby $-1;4-3;(()^(2))+1$ tworzą ciąg arytmetyczny (w tej kolejności).

Rozwiązanie. Wyraźmy jeszcze raz wyraz średni za pomocą średniej arytmetycznej sąsiadujących wyrazów:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \prawo.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Znów równanie kwadratowe. I znowu mamy dwa pierwiastki: $x=6$ i $x=1$.

Odpowiedź 1; 6.

Jeśli w trakcie rozwiązywania problemu natkniesz się na jakieś brutalne liczby lub nie jesteś do końca pewien poprawności znalezionych odpowiedzi, istnieje wspaniała technika, która pozwala sprawdzić: czy poprawnie rozwiązaliśmy problem?

Załóżmy, że w zadaniu nr 6 otrzymaliśmy odpowiedzi −3 i 2. Jak możemy sprawdzić, czy te odpowiedzi są poprawne? Po prostu podłączmy je do stanu pierwotnego i zobaczmy, co się stanie. Przypomnę, że mamy trzy liczby ($-6(()^(2))$, $+1$ i $14+4(()^(2))$), które muszą tworzyć postęp arytmetyczny. Podstawmy $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Mamy liczby -54; −2; Liczba 50 różniących się o 52 jest niewątpliwie ciągiem arytmetycznym. To samo dzieje się dla $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Znowu progresja, ale z różnicą 27. Zatem problem został rozwiązany poprawnie. Chętni mogą sami sprawdzić drugi problem, ale od razu powiem: tam też wszystko jest w porządku.

Ogólnie rzecz biorąc, rozwiązując ostatnie problemy, natknęliśmy się na kolejne interesujący fakt, o czym również warto pamiętać:

Jeśli trzy liczby są takie, że druga jest średnią arytmetyczną pierwszej i ostatniej, wówczas liczby te tworzą ciąg arytmetyczny.

W przyszłości zrozumienie tego stwierdzenia pozwoli nam dosłownie „skonstruować” niezbędne postępy w oparciu o warunki problemu. Zanim jednak zajmiemy się taką „konstrukcją”, warto zwrócić uwagę na jeszcze jeden fakt, który bezpośrednio wynika z tego, co zostało już omówione.

Grupowanie i sumowanie elementów

Wróćmy jeszcze raz do osi liczb. Zauważmy tam kilku członków postępu, pomiędzy którymi być może. jest wart wielu innych członków:

Na osi liczbowej zaznaczono 6 elementów

Spróbujmy wyrazić „lewy ogon” poprzez $((a)_(n))$ i $d$, a „prawy ogon” poprzez $((a)_(k))$ i $d$. To jest bardzo proste:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Teraz zauważ, że następujące kwoty są równe:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Mówiąc najprościej, jeśli na początek weźmiemy pod uwagę dwa elementy progresji, które w sumie są równe pewnej liczbie $S$, a następnie zaczniemy przechodzić od tych elementów do przeciwne strony(do siebie lub odwrotnie, aby się oddalić), następnie sumy elementów, na które się natkniemy, również będą równe$S$. Najłatwiej można to przedstawić graficznie:


Równe wcięcia dają równe kwoty

Zrozumienie tego faktu pozwoli nam rozwiązać problemy o zasadniczo wyższym poziomie złożoności niż te, które rozważaliśmy powyżej. Na przykład te:

Zadanie nr 8. Wyznacz różnicę ciągu arytmetycznego, w którym pierwszy wyraz wynosi 66, a iloczyn drugiego i dwunastego wyrazu jest najmniejszy z możliwych.

Rozwiązanie. Zapiszmy wszystko, co wiemy:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Nie znamy więc różnicy w progresji $d$. Właściwie całe rozwiązanie zostanie zbudowane wokół różnicy, ponieważ iloczyn $((a)_(2))\cdot ((a)_(12))$ można przepisać w następujący sposób:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Dla tych, którzy są w zbiorniku: wziąłem całkowity mnożnik 11 z drugiego nawiasu. Zatem pożądany iloczyn jest funkcją kwadratową w odniesieniu do zmiennej $d$. Rozważmy zatem funkcję $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - jej wykres będzie parabolą z gałęziami skierowanymi do góry, ponieważ jeśli rozszerzymy nawiasy, otrzymamy:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Jak widać, współczynnik najwyższego terminu wynosi 11 - to jest Liczba dodatnia, więc tak naprawdę mamy do czynienia z parabolą z gałęziami skierowanymi w górę:


wykres funkcji kwadratowej - parabola

Uwaga: ta parabola przyjmuje swoją minimalną wartość w wierzchołku z odciętą $((d)_(0))$. Oczywiście tę odciętą możemy obliczyć korzystając ze standardowego schematu (istnieje wzór $((d)_(0))=(-b)/(2a)\;$), ale dużo rozsądniej byłoby to zauważyć że żądany wierzchołek leży na osi symetrii paraboli, zatem punkt $((d)_(0))$ jest w równej odległości od pierwiastków równania $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

Dlatego nie spieszyło mi się szczególnie z otwieraniem zamków: w ich oryginalnej formie korzenie były bardzo, bardzo łatwe do znalezienia. Dlatego odcięta jest równa średniej arytmetycznej liczb -66 i -6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Co daje nam odkryta liczba? Dzięki niemu wymagany iloczyn przyjmuje najmniejszą wartość (swoją drogą nigdy nie obliczaliśmy $((y)_(\min ))$ - nie jest to od nas wymagane). Jednocześnie liczba ta jest różnicą pierwotnego postępu, tj. znaleźliśmy odpowiedź. :)

Odpowiedź: −36

Zadanie nr 9. Pomiędzy liczby $-\frac(1)(2)$ i $-\frac(1)(6)$ wstaw trzy liczby tak, aby razem z nimi tworzyły ciąg arytmetyczny.

Rozwiązanie. Zasadniczo musimy utworzyć sekwencję pięciu liczb, przy czym pierwsza i ostatnia liczba są już znane. Oznaczmy brakujące liczby za pomocą zmiennych $x$, $y$ i $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Zauważ, że liczba $y$ jest „środkiem” naszego ciągu - jest w równej odległości od liczb $x$ i $z$ oraz od liczb $-\frac(1)(2)$ i $-\frac (1)(6)$. A jeśli obecnie nie możemy uzyskać $y$ z liczb $x$ i $z$, to sytuacja wygląda inaczej przy końcach progresji. Przypomnijmy średnią arytmetyczną:

Teraz, znając $y$, znajdziemy pozostałe liczby. Zauważ, że $x$ leży pomiędzy liczbami $-\frac(1)(2)$ i $y=-\frac(1)(3)$, które właśnie znaleźliśmy. Dlatego

Stosując podobne rozumowanie, znajdujemy pozostałą liczbę:

Gotowy! Znaleźliśmy wszystkie trzy liczby. Zapiszmy je w odpowiedzi w kolejności, w jakiej należy je wstawić pomiędzy oryginalne liczby.

Odpowiedź: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Zadanie nr 10. Pomiędzy liczby 2 i 42 wstaw kilka liczb, które razem z tymi liczbami tworzą ciąg arytmetyczny, jeśli wiesz, że suma pierwszej, drugiej i ostatniej z wstawionych liczb wynosi 56.

Rozwiązanie. Jeszcze bardziej złożony problem, który jednak rozwiązuje się według tego samego schematu, co poprzednie - poprzez średnią arytmetyczną. Problem w tym, że nie wiemy dokładnie, ile liczb należy wstawić. Załóżmy więc dla pewności, że po wstawieniu wszystkiego będzie dokładnie $n$ liczb, a pierwsza z nich to 2, a ostatnia to 42. W tym przypadku wymagany postęp arytmetyczny można przedstawić w postaci:

\[\lewo(((a)_(n)) \prawo)=\lewo\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \prawo\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Należy jednak pamiętać, że liczby $((a)_(2))$ i $((a)_(n-1))$ otrzymuje się z liczb 2 i 42 na krawędziach o jeden krok ku sobie, tj. . do środka sekwencji. A to oznacza, że

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ale wtedy wyrażenie zapisane powyżej można przepisać w następujący sposób:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Znając $((a)_(3))$ i $((a)_(1))$, możemy łatwo znaleźć różnicę progresji:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Strzałka w prawo d=5. \\ \end(align)\]

Pozostaje tylko znaleźć pozostałe wyrazy:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Tym samym już w 9. kroku dotrzemy do lewego końca ciągu – liczby 42. W sumie należało wstawić tylko 7 liczb: 7; 12; 17; 22; 27; 32; 37.

Odpowiedź: 7; 12; 17; 22; 27; 32; 37

Zadania tekstowe z progresją

Podsumowując, chciałbym rozważyć kilka stosunkowo prostych problemów. No cóż, proste: dla większości uczniów, którzy uczą się matematyki w szkole i nie przeczytali tego, co jest napisane powyżej, te problemy mogą wydawać się trudne. Niemniej jednak tego typu problemy pojawiają się na egzaminie OGE i Unified State Exam z matematyki, dlatego polecam się z nimi zapoznać.

Zadanie nr 11. W styczniu zespół wyprodukował 62 części, a w każdym kolejnym miesiącu wyprodukował o 14 części więcej niż w miesiącu poprzednim. Ile części wyprodukował zespół w listopadzie?

Rozwiązanie. Oczywiście liczba części wymienionych według miesiąca będzie reprezentować rosnący postęp arytmetyczny. Ponadto:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Listopad to 11 miesiąc roku, więc musimy znaleźć $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Tym samym w listopadzie wyprodukowane zostaną 202 części.

Zadanie nr 12. Pracownia introligatorska opatrzyła w styczniu 216 woluminów, a w każdym kolejnym miesiącu oprawiała o 4 woluminy więcej niż w miesiącu poprzednim. Ile książek oprawiono w grudniu na warsztatach?

Rozwiązanie. Wszystkie takie same:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Grudzień jest ostatnim, 12-tym miesiącem roku, więc szukamy $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Oto odpowiedź – w grudniu zostanie oprawionych 260 książek.

Cóż, jeśli doczytałeś tak daleko, spieszę ci pogratulować: pomyślnie ukończyłeś „kurs młodego wojownika” w postępach arytmetycznych. Możesz bezpiecznie przejść do następnej lekcji, gdzie przestudiujemy wzór na sumę progresji, a także ważne i bardzo przydatne konsekwencje z niego wynikające.

Lub arytmetyka to rodzaj uporządkowanej sekwencji liczbowej, której właściwości są badane na szkolnym kursie algebry. W artykule szczegółowo omówiono kwestię znalezienia sumy postępu arytmetycznego.

Co to za postęp?

Zanim przejdziemy do pytania (jak znaleźć sumę ciągu arytmetycznego) warto zrozumieć, o czym mówimy.

Dowolny ciąg liczb rzeczywistych uzyskany przez dodanie (odjęcie) pewnej wartości od każdej poprzedniej liczby nazywany jest postępem algebraicznym (arytmetycznym). Definicja ta, przetłumaczona na język matematyczny, przyjmuje postać:

Tutaj i jest numerem seryjnym elementu rzędu a i. Zatem znając tylko jeden numer początkowy, możesz łatwo przywrócić całą serię. Parametr d we wzorze nazywany jest różnicą progresji.

Można łatwo wykazać, że dla rozpatrywanego szeregu liczb zachodzi równość:

za n = za 1 + re * (n - 1).

Oznacza to, że aby znaleźć wartość n-tego elementu w kolejności, należy dodać różnicę d do pierwszego elementu a 1 n-1 razy.

Jaka jest suma postępu arytmetycznego: wzór

Przed podaniem wzoru na wskazaną kwotę warto rozważyć prosty przypadek szczególny. Biorąc pod uwagę ciąg liczb naturalnych od 1 do 10, musisz znaleźć ich sumę. Ponieważ w ciągu (10) wyrazów jest niewiele, możliwe jest rozwiązanie problemu od razu, czyli zsumowanie wszystkich elementów po kolei.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Warto zwrócić uwagę na jedną ciekawą rzecz: skoro każdy wyraz różni się od kolejnego tą samą wartością d = 1, to sumowanie parami pierwszego z dziesiątym, drugiego z dziewiątym itd. da ten sam wynik. Naprawdę:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Jak widać tych sum jest tylko 5, czyli dokładnie dwa razy mniej niż liczba elementów szeregu. Następnie mnożąc liczbę sum (5) przez wynik każdej sumy (11), otrzymasz wynik uzyskany w pierwszym przykładzie.

Jeśli uogólnimy te argumenty, możemy zapisać następujące wyrażenie:

S n = n * (za 1 + za n) / 2.

Wyrażenie to pokazuje, że wcale nie jest konieczne sumowanie wszystkich elementów w rzędzie, wystarczy znać wartość pierwszego a 1 i ostatniego a n oraz Łączna warunki.

Uważa się, że Gauss po raz pierwszy pomyślał o tej równości, gdy szukał rozwiązania problemu zadanego przez swojego nauczyciela: zsumuj pierwsze 100 liczb całkowitych.

Suma elementów od m do n: wzór

Wzór podany w poprzednim akapicie odpowiada na pytanie, jak znaleźć sumę ciągu arytmetycznego (pierwszych elementów), jednak często w problemach konieczne jest zsumowanie ciągu liczb w środku ciągu. Jak to zrobić?

Najłatwiej odpowiedzieć na to pytanie, rozważając następujący przykład: niech będzie konieczne znalezienie sumy wyrazów od m-tego do n-tego. Aby rozwiązać zadanie należy przedstawić zadany odcinek od m do n postępu w postaci nowego ciągu liczbowego. W takich m-ta reprezentacja termin a m będzie pierwszym, a n będzie ponumerowane n-(m-1). W takim przypadku, stosując standardowy wzór na sumę, otrzymamy następujące wyrażenie:

S m n = (n - m + 1) * (za m + za n) / 2.

Przykład użycia formuł

Wiedząc, jak znaleźć sumę ciągu arytmetycznego, warto rozważyć prosty przykład wykorzystania powyższych wzorów.

Poniżej znajduje się ciąg liczbowy, powinieneś znaleźć sumę jego wyrazów, zaczynając od 5 i kończąc na 12:

Podane liczby wskazują, że różnica d jest równa 3. Korzystając z wyrażenia na n-ty element, możesz znaleźć wartości 5. i 12. wyrazu progresji. Okazało się:

za 5 = za 1 + re * 4 = -4 + 3 * 4 = 8;

za 12 = za 1 + re * 11 = -4 + 3 * 11 = 29.

Znając wartości liczb na końcach rozważanego ciągu algebraicznego, a także wiedząc, jakie liczby w szeregu zajmują, możesz skorzystać ze wzoru na sumę uzyskaną w poprzednim akapicie. Okaże się:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Warto zauważyć, że wartość tę można uzyskać inaczej: najpierw znajdź sumę pierwszych 12 elementów, korzystając ze standardowego wzoru, następnie oblicz sumę pierwszych 4 elementów, korzystając z tego samego wzoru, a następnie odejmij drugą od pierwszej sumy.

Spodobał Ci się artykuł? Udostępnij to