Контакты

Все виды рнк. Строение и функции рнк. Виды и типы РНК клеток

Что такое ДНК и РНК? Каковы их функции и значение в нашем мире? Из чего они состоят и как работают? Об этом и не только рассказывается в статье.

Что такое ДНК и РНК

Биологические науки, изучающие принципы хранения, реализации и передачи генетической информации, структуру и функции нерегулярных биополимеров относятся к молекулярной биологии.

Биополимеры, высокомолекулярные органические соединения, которые образовались из остатков нуклеотидов, являются нуклеиновыми кислотами. Они хранят информацию о живом организме, определяют его развитие, рост, наследственность. Эти кислоты участвуют в биосинтезе белка.

Различают два вида нуклеиновых кислот, содержащихся в природе:

  • ДНК — дезоксирибонуклеиновая;
  • РНК — рибонуклеиновая.

О том, что такое ДНК, миру было поведано в 1868 году, когда ее открыли в клеточных ядрах лейкоцитов и сперматозоидов лосося. Позже они были обнаружены во всех животных и растительных клетках, а также в бактериях, вирусах и грибах. В 1953 году Дж. Уотсон и Ф. Крик в результате рентгено-структурного анализа выстроили модель, состоящую из двух полимерных цепей, которые закручены спиралью одна вокруг другой. В 1962 году эти ученые были удостоены Нобелевской премии за свое открытие.

Дезоксирибонуклеиновая кислота

Что такое ДНК? Это нуклеиновая кислота, которая содержит генотип индивида и передает информацию по наследству, самовоспроизводясь. Поскольку эти молекулы являются очень большими, имеется огромное количество возможных последовательностей из нуклеотидов. Поэтому число различных молекул является фактически бесконечным.

Структура ДНК

Это самые крупные биологические молекулы. Их размер составляет от одной четверти у бактерий до сорока миллиметров в ДНК человека, что гораздо больше максимального размера белка. Они состоят из четырех мономеров, структурных компонентов нуклеиновых кислот — нуклеотидов, в которые входит азотистое основание, остаток фосфорной кислоты и дезоксирибоза.

Азотистые основания имеют двойное кольцо из углерода и азота— пурины, и одно кольцо — пиримидины.

Пуринами являются аденин и гуанин, а пиримидинами — тимин и цитозин. Они обозначаются заглавными латинскими буквами: A, G, T, C; а в русской литературе — на кириллице: А, Г, Т, Ц. При помощи химической водородной связи они соединяются друг с другом, в результате чего появляются нуклеиновые кислоты.

Во Вселенной именно спираль является наиболее распространенной формой. Так и структура ДНК молекулы тоже имеет ее. Полинуклеотидная цепочка закручена наподобие винтовой лестницы.

Цепи в молекуле направлены противоположно друг от друга. Получается, если в одной цепи от 3"-конца к 5", то в другой цепи ориентация будет наоборот от 5"-конца к 3".

Принцип комплементарности

Две нити соединяются в молекулу азотистыми основаниями таким образом, что аденин имеет связь с тимином, а гуанин — только с цитозином. Последовательно расположенные нуклеотиды в одной цепи определяют другую. Это соответствие, лежащее в основе появления новых молекул в результате репликации или удвоения, стало называться комплементарностью.

Получается, что число адениловых нуклеотидов равно числу тимидиловых, а гуаниловые равны количеству цитидиловых. Это соответствие стало называться «правилом Чаргаффа».

Репликация

Процесс самовоспроизведения, протекающий под контролем ферментов, является основным свойством ДНК.

Все начинается с раскручивания спирали благодаря ферменту ДНК-полимеразы. После разрыва водородных связей, в одной и в другой нитях синтезируется дочерняя цепь, материалом для которой выступают свободные нуклеотиды, имеющиеся в ядре.

Каждая цепь ДНК является матрицей для новой цепи. В результате из одной получаются две абсолютно идентичные материнской молекулы. При этом одна нить синтезируется сплошной, а другая сначала фрагментарно, лишь затем соединяясь.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Рибонуклеиновая кислота

Эта молекула во многом схожа с дезоксирибонуклеиновой кислотой. Однако она не такая большая, как ДНК. И РНК также состоит из полимерных нуклеотидов четырех типов. Три из них сходны с ДНК, но вместо тимина в нее входит урацил (U или У). Кроме этого, РНК состоит из углевода — рибозы. Главным отличием служит то, что спираль этой молекулы является одинарной, в отличие от двойной в ДНК.

Функции РНК

В основе функций рибонуклеиновой кислоты лежат три различных вида РНК.

Информационная передает генетическую информацию от ДНК в цитоплазму ядра. Ее еще называют матричной. Это незамкнутая цепь, синтезирующаяся в ядре при помощи фермента РНК-полимеразы. Несмотря на то что в молекуле ее процентное содержание чрезвычайно низкое (от трех до пяти процентов клетки), на ней лежит важнейшая функция - являться матрицей для синтеза белков, информируя об их структуре с молекул ДНК. Один белок кодируется одной специфичной ДНК, поэтому их числовое значение равное.

Рибосомная в основном состоит из цитоплазматических гранул — рибосом. Р-РНК синтезируются в ядре. На их долю приходится примерно восемьдесят процентов всей клетки. Этот вид обладает сложной структурой, образовывая петли на комплементарных частях, что ведет к молекулярной самоорганизации в сложное тело. Среди них имеются три типа у прокариот, и четыре — у эукариот.

Транспортная действует в роли «адаптера», выстраивая в соответствующем порядке аминокислоты полипептидной цепи. В среднем, она состоит из восьмидесяти нуклеотидов. В клетке их содержится, как правило, почти пятнадцать процентов. Она предназначена переносить аминокислоты туда, где белок синтезируется. В клетке насчитывается от двадцати до шестидесяти типов транспортной РНК. У них всех — сходная организация в пространстве. Они приобретают структуру, которую называют клеверным листом.

Значение РНК и ДНК

Когда было открыто, что такое ДНК, ее роль не была такой очевидной. Даже сегодня, несмотря на то, что раскрыто намного больше информации, остаются без ответов некоторые вопросы. А какие-то, возможно, еще даже не сформулированы.

Общеизвестное биологическое значение ДНК и РНК заключаются в том, что ДНК передает наследственную информацию, а РНК участвует в синтезе белка и кодирует белковую структуру.

Однако существуют версии, что эта молекула связана с нашей духовной жизнью. Что такое ДНК человека в этом смысле? Она содержит всю информацию о нем, его жизнедеятельности и наследственности. Метафизики считают, что опыт прошлых жизней, восстановительные функции ДНК и даже энергия Высшего «Я» - Творца, Бога содержится в ней.

По их мнению, цепочки содержат коды, касающиеся всех аспектов жизни, включая и духовную часть. Но некоторая информация, например, о восстановлении своего тела, расположена в структуре кристалла многомерного пространства, находящегося вокруг ДНК. Она представляет собой двенадцатигранник и является памятью всей жизненной силы.

Ввиду того, что человек не обременяет себя духовными знаниями, обмен информации в ДНК с кристаллической оболочкой происходит очень медленно. У среднестатистического человека он составляет всего пятнадцать процентов.

Предполагается, что это было сделано специально для сокращения жизни человека и падения на уровень дуальности. Таким образом, у человека растет кармический долг, а на планете поддерживается необходимый для некоторых сущностей уровень вибрации.

Наименование параметра Значение
Тема статьи: Типы РНК.
Рубрика (тематическая категория) Спорт

Выделяют три базовых типа РНК, различающихся по структуре, величинœе молекул, расположению в клетке и выполняемым функциям.

Рибосомные РНК (рРНК ) синтезируются в основном в ядрышке и составляют примерно 85% всœех РНК клетки. Οʜᴎ входят в состав рибосом и участвуют в формировании активного центра рибосомы, где происходит процесс биосинтеза белка.

Транспортные РНК (тРНК) образуются в ядре на ДНК, затем переходят в цитоплазму. Οʜᴎ составляют около 10% клеточной РНК и являются самыми небольшими по размеру РНК, состоящими из 70- 100 нуклеотидов. Каждая тРНК присоединяет определœенную аминокислоту и транспортирует ее к месту сборки полипептида в рибосоме. Все известные тРНК за счёт комплементарного взаимодействия образуют вторичную структуру, по форме напоминающую лист клевера. В молекуле тРНК есть два активных участка: триплет-антикодон на одном конце и акцепторный конец на другом (рис. 20).

Каждой аминокислоте соответствует комбинация из трех нуклеотидов - триплет. Кодирующие аминокислоты триплеты - кодоны ДНК - передаются в виде информации триплетов (кодонов) иРНК. У верхушки клеверного листа располагается триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Этот триплет различен для тРНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносится данной тРНК. Он получил название антикодон.

Акцепторный конец является ʼʼпосадочной площадкойʼʼ для аминокислоты.

Информационные, или матричные, РНК (иРНК) составляют около 5% всœей клеточной РНК. Οʜᴎ синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется. Учитывая зависимость отобъема копируемойинформации молекула иРНК может иметь различную длину.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, различные типы РНК представляют из себяединую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки.

Все типы РНК, за исключением генетической РНК вирусов, не способны к самоудвоению и самосборке. Нуклеиновая кислота. Нуклеотид. Дезоксирибонуклеиновая кислота͵ или ДНК. Рибонуклеиновая кислота͵ или РНК. Азотистые основания: аденин, гуанин, цитозин, тимин, урацил. Комплементарность. Транспортная РНК (тРНК). Рибосомная РНК (рРНК). Информационная РНК (иРНК). 1. Какое строение имеет нуклеотид? 2. Какое строение имеет молекула ДНК? 3. В чем заключается принцип комплементарности? 4. Что общего и какие различия имеются в строении молекул 5. ДНК и РНК? 6. Какие типы молекул РНК вам известны? Какова их функция? 7. Фрагмент одной цепи ДНК имеет следующий состав: А-А-Г-Г-Ц-Ц-Ц-Т-Т-. Используя принцип комплементарности, достройте вторую цепь.

В молекуле ДНК тиминов насчитывается 24% от общего числа азотистых оснований. Определите количество других азотистых оснований в этой молекуле.

Нобелœевская премия 1962 ᴦ. была присуждена двум ученым - Дж. Уотсону и Ф, Крику, которые в 1953 ᴦ. предложили модель строения молекулы ДНК. Она была подтверждена экспериментально. Это открытие имело огромное значение для развития генетики, молекулярной биологии и других наук. У вирусов, в отличие от других организмов, встречаются одноцепочечные ДНК и двухцепочечные РНК.

Типы РНК. - понятие и виды. Классификация и особенности категории "Типы РНК." 2017, 2018.

  • 8. Строение фосфолипидов. Роль фосфолипидов в метаболизме.
  • 9. Строение и функции эйкозаноидов.
  • 10. Строение и функции холестерина.
  • 13. Биологическая роль макро- и микроэлементов.
  • 15. Роль фосфопиридоксаля в метаболизме
  • 17.Биохимическая функция витамина в12.
  • 18.Биологическая роль пантотеновой кислоты(в5)
  • 19.Биологическая роль рибофлавина(в2)
  • 20.Биологическая роль никотинамида.
  • 21. Биохимические функции тиаминпирофосфата.
  • 22. Биохимическая роль витамина с.
  • 23. Биологическая роль тетрагидрофолиевой кислоты (тгфк).
  • 24. Биологическая роль витамина d.
  • 25. Биологическая роль витамина а.
  • 26. Биологическая роль витамина е.
  • 27. Биологическая роль витамина к.
  • 29. Строение и классификация ферментов.
  • 30. Конкурентное и неконкурентное ингибирование ферментов.
  • 31. Особенности биологического катализа.
  • 32. Классификация гормонов. Роль гормонов в регуляции метаболизма.
  • 33. Гормоны надпочечников и их биохимические функции.
  • 34. Гормоны гипофиза и их биологическая роль.
  • 35. Биологическая роль половых гормонов.
  • 36. Биологическая роль гормонов коры надпочечников.
  • 37. Биологическая роль гормонов поджелудочной железы.
  • 38. Гормоны щитовидной железы. Их влияние на метаболизм.
  • 41. Биохимическая роль вторичных мессенджеров в метаболизме.
  • 42.Макроэргические соединения и их роль в метаболизме.
  • 43. Дыхательная цепь в митохондриях.
  • 44. Последовательность расположения и строение переносчиков электронов в дыхательной цепи.
  • 45. Процесс окислительного фосфорилирования, его биологическая роль.
  • 47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках.
  • 49. Биохимические механизмы окислительного декарбоксилирования пирувата.
  • 50. Механизм реакций и биологическая роль цикла Кребса.
  • 53. Глюконеогенез и его биологическая роль.
  • 54. Пентозофосфатный путь окисления углеводов.
  • 55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных.
  • 62. Синтез триацилглицеридов и фосфолипидов.
  • 63. Кетоновые тела и их роль в метаболизме.
  • 64. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков.
  • 65.Биохимические механизмы переваривания белков в жкт.
  • 66.Механизмы реакций трансаминирования и дезаминирования аминокислот.
  • 67.Декарбоксилирование аминокислот. Биологическая роль продуктов декарбоксилирования.
  • 69.Биологические механизмы окисления нуклеотидов
  • 70.Строение молекулы днк
  • 71. Биохимические механизмы синтеза дн
  • 72. Репликация и репарация.
  • 73. Строение рнк. Виды рнк. Их роль в метаболизме.
  • 74. Биохимические механизмы синтеза рнк.
  • 75. Биохимические механизмы синтеза белка.
  • 73. Строение рнк. Виды рнк. Их роль в метаболизме.

    Рибонуклеиновая кислота (РНК) – это однонитевой биополимер, в качестве мономеров которого выступают нуклеотиды.

    Матрицей для синтеза новых молекул РНК являются молекулы дезоксирибонуклеиновой кислоты (транскрипция РНК). Хотя в ряде случаев возможен и обратный процесс (образование новых ДНК на матрице РНК в ходе репликации некоторых вирусов). Также основой для биосинтеза РНК могут быть другие молекулы рибонуклеиновой кислоты (репликация РНК). В транскрипции РНК, происходящей в ядре клетки, участвует целый ряд ферментов, наиболее значимым из которых является РНК-полимераза.

    Структура РНК.

    Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)). РНК напоминает по своему строению одну цепь ДНК. Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза. Вторым существенным отличием в химическом строении РНК от ДНК является отсутствие в молекуле рибонуклеиновой кислоты такого нуклеотида как тимин. В РНК он заменён на урацил.

    Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.

    1) Информационная РНК (и-РНК).

    Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение – перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы. Относительно небольшая популяция молекул РНК, составляющая менее 1% от всех молекул.

    2) Рибосомная РНК (р-РНК).

    Самый распространенный вид РНК (около 90% от всех молекул данного вида в клетке). Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул. Имеет наибольшие, по сравнению с другими видами РНК, размеры. Молекулярная масса может достигать 1,5 миллионов кДальтон и более.

    3) Транспортная РНК (т-РНК).

    Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта (переноса) аминокислот к месту синтеза белка (в рибосомы). Транспортная РНК составляет до 10% от всех молекул РНК, располагающихся в клетке. Имеет наименьше, по сравнению с другими РНК- молекулами, размеры (до 100 нуклеотидов).

    4) Минорные (малые) РНК.

    Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д.

    5) Рибозимы.

    Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора).

    6) Вирусные РНК.

    Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК.

    РНК - нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания - аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах. РНК принимают участие во всех стадиях процесса генной экспрессии и биосинтеза белка

    Структура и функции РНК.В цитоплазме клеток содержатся три основных вида РНК:  матричная РНК (мРНК) выполняет роль матрицы при синтезе белка. Имеет сложную вторичную структуру. В целом линейная молекула мРНК имеет несколько двухспиральных шпилек, на концах которых располагаются «знаки» инициации и терминации трансляции  транспортная РНК (тРНК) выполняет функцию посредника в ходе трансляции мРНК, транспортирует аминокислоту на рибосому. Вторичная структура имеет форму клеверного листа;  рибосомная РНК (рРНК) формируют основу, с которой связываются специфические белки при образовании рибосомы.

    Также в ядре клетки обнаружена ядерная РНК (яРНК), являющаяся предшественницей мРНК и тРНК.

    Синтез РНК (транскрипция).1. Инициация. σ-Субединица РНК-полимеразы связывается с промотором – специальным участком ДНК. К σ-субединице присоединяется кофермент, цепи ДНК раскручиваются и образуется открытый транскрипционный комплекс. Первым нуклеотидом с 5’-конца является гуанин, который метилируется (кэпируется), эта стартовая точка гена называется кэп-сайт. 2. Элонгация. Происходит синтез комплементарной цепи. При этом пройденные участки из 15-20 нуклеотидов вновь спирализуются. 3. Терминация. Синтез РНК замедляется по достижении стоп-сигнала. Затем синтезируется цепь по коду дополнительного сигнала и еще 15 следующих за ним нуклеотидов. В процессе отделения РНК от матрицы экзонуклеаза отщепляет терминальные 15 нуклеотидов, а полиА-полимераза достраивает 150-200 полиА-нуклеотидов. 4. Процессинг РНК.

    В отличие от ДНК, РНК не образуют двойных спиралей, но содержат короткие участки со спаренными основаниями. Это приводит к образованию субструктур, которые при двумерном изображении напоминают «шпильки» и петли, образующие фигуру типа «кленового листа». В таких структурах двухцепочечные участки соединены петлями.
    Матричная РНК переносит генетическую информацию из клеточного ядра в цитоплазму. Так как мРНК считывается на рибосоме кодон за кодоном она не должна складываться в стабильную третичную структуру. Спариванию оснований препятствуют белки, ассоциированные с мРНК. Для мРНК характерно короткое время жизни, так как они быстро распадаются после трансляции. В сплайсинге предшественников мРНКпринимают участие малые ядерные РНК

    Транспортные РНК участвуют в процессе трансляции в качестве промежуточного связующего звена между нуклеиновыми кислотами и белками. Это небольшие молекулы РНК из 70-90 нуклеотидов, которые с помощью своих антикодонов "узнают" за счет спаривания оснований определенные кодоны на мРНК.
    По функциональному значению РНК делят на следующие виды:
    1. транспортные РНК (тРНК) осуществляют кодирование аминокислот и перенос их в рибосомальный аппарат клетки в процессе биосинтеза белка. ТРНК локализованы в ядерном соке, митохондриях.
    2. рибосомальные РНК (рРНК) являются структурной основой рибосом и выполняют в них разнообразные функции.
    3. информационные или матричные РНК (мРНК) выполняют роль матрицы в процессе сборки полипептидных цепей в рибосомальном аппарате клетки.
    4. вирусные РНК являются составными частями вирусных и фаговых рибонуклеопротеинов и несут всю информацию, необходимую для размножения вируса в клетках хозяина.

    29. Рибосомы. Генетический код и его свойства. Трансляция.
    Рибосома состоят из двух частей и представляют собой нуклеопротеины, состоящие из рРНК и белка в соотношении 1:1. Биологическая роль рРНК – являются структурной основой рибосом, взаимодействует с мРНК и тРНК в процессе биосинтеза белка, принимает участие в процессе сборки полипептидной цепи. У эукариот обнаружено 4 типа рРНК с различным коэф. седиментации: 18S(в малой части рибосомы), а 28S, 5,8S и 5S (сведбергов) – в большой части рибосомы.. Они различаются молекулярной массой (35 000-1 600 000) и локализацией в рибосомах. Вторичная структура рРНК характеризуется спирализацией цепи самой на себя, третичная – ее компактной укладкой. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (трансляция). Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

    Генети́ческий код - свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. Информация о строении белка закодирована в ДНК с помощью генетического кода, который является линейным, непрерывным, триплетным, выражденным. Он является универсальным. В ДНК используется четыре нуклеотида - аденин (А), гуанин (G), цитозин (С), тимин (T). Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом - урацилом, который обозначается буквой U. В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв. Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а, следовательно, все его биологические свойства. Набор аминокислот также универсален почти для всех живых организмов.Реализация генетической информации в живых клетках (то есть синтез белка) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам.
    Свойства:1Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).2Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.3Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).4Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)5Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.7Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).8Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

    30. Регуляция синтеза белка у прокариотМутации, их виды и последствия.

    Оперон – это функциональная единица ДНК прокариот. Строение:

    1. Промотор – участок, к которому присоединяется фермент РНК-полимераза

    2. Оператор – участок, которому присоединяется репрессор, который не дает РНК-полимеразе двигаться по ДНК

    3. Структурные гены – содержат информацию о структуре белка. У прокариот в одном опероне находятся гены нескольких белков, необходимых для осуществления какой-либо биохимической реакции.

    4. Терминатор – участок, в котором РНК-полимераза отсоединяется от ДНК.

    Лактозный оперон открыли Жакоб, Моно и Львов в 1961 г. Его работа:

    1. Когда в среде нет лактозы, кишечная палочка не вырабатывает ферменты, необходимые для ее расщепления, потому что к оператору присоединен репрессор, который не дает происходить транскрипции.

    2. Когда в среде появляется лактоза, то она соединяется с белком-репрессором, он денатурирует и отсоединяется от оператора. Теперь ничто не мешает РНК-полимеразе делать иРНК, на которой рибосомы тут же делают белки.

    3. Белки-ферменты расщепляют лактозу, в том числе и ту, что была присоединена к репрессору, он возвращается на место, транскрипция прекращается.

    Мута́ция - стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменениегенотипа, происходящее под влиянием внешней или внутренней среды. Процесс возникновения мутаций получил название мутагенеза.

    Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды

    Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

    Существует несколько классификаций мутаций по различным критериям. В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

     геномные;  хромосомные;  генные.

    Геномные : - полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) - изменение числа хромосом, не кратное гаплоидному набору

    При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация)

    На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях.

    Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA

    4) обратная замена (стоп-кодона на смысловой кодон).

    31.Ферментативный гидролиз белков.Протеолитические ферменты, их специфичность, активация.

    Переваривание белков пищи начинается в желудке. Здесь в кислой среде белок денатурирует и подвергается действию пепсина – эндонуклеазы желудочного сока, которая гидролизует внутренние связи, образованные карбоксильной группой ароматических аминокислот (Phe +, Tyr+, Thr+).

    Образовавшиеся полинуклеотиды поступают в просвет тонкого кишечника. Здесь на них действуют четыре фермента панкреатического секрета: трипсин, химотрипсин, эластаза и карбоксипептидаза. Трипсин и химотрипсин гидролизуют связи, образованные аминогруппами основных (+Lys, +Arg) и ароматических аминокислот (+Phe, +Tyr, +Thr). Эластаза – эндонуклеаза широкого спектра действия. Карбоксипептидаза – экзонуклеаза, гидролизующая связь С-концевой аминокислоты.+N-CH(R)-COOH

    В пристеночной области кишечника олигонуклеотиды гидролизуются до свободных аминокислот ферментами кишечного сока – аминопептидазой, ди- и трипептидазой. Образовавшиеся свободные аминокислоты всасываются и поступают в кровоток.

    ПРОТЕОЛИТИЧЕСКИЕ ФЕРМЕНТЫ (протеазы), ферменты класса гидролаз, катализирующие гидролиз (протео-лиз) пептидных связей. Место расщепления пептидной связи в полипептидной цепи определяется позиционной и субстратной специфичностью фермента и пространств. структурой гидролизуемого субстрата (белка или пептида).

    Различают экзопептидазы, расщепляющие связи вблизи С- или N-конца цепи (соотв. карбоксипептидазы и аминопеп-тидазы)и эндопептидазы (протеиназы), гидролизующие связи, удаленные от концевых остатков (напр., трипсин). Лишь ограниченное число протеолитических ферментов обладает строгой субстратной специфичностью. К ним относят, напр., ренин, гидроли-зующий связь между остатками лейцина в положениях 10 и 11 в ангиотензиногене (предшественник ангиотензина пептида, участвующего в регуляции кровяного давления).

    В зависимости от локализации фермента протеолиз происходит при разл. рН. Так, протеолитические ферменты желудка (напр., пепсин, гастриксин) функционируют при рН 1,5-2, лизосомные ферменты-при рН 4-5, а протеолитические ферменты сыворотки крови, тонкого кишечника и др.-при нейтральных или слабощелочных значениях рН. Нек-рые протеолитические ферменты используют в качестве кофактора ионы металлов-Са2+, Mg2+ и др.

    Дефектные и чужеродные белки деградируют в клетке при участии АТФ-зависимой системы протеолиза. У эукариот (все организмы, кроме бактерий и синезеленых водорослей) эта система включает низкомол. белок убикитин, образующий с белками-субстратами конъюгат, и протеазы, расщепляющие этот конъюгат.

    32.Общая схема источников и расходования аминокислот в организме. Незаменимые аминокислоты. Общие пути катаболизма аминокислот.

    Доставленные с кровотоком аминокислоты в печень имеют несколько основных путей метаболизма:

    1. Биосинтеза белка – протекает как в самой печени, так и в других тканях.

    2. Трансаминирование и использование углеродного скелета для биосинтеза глюкозы, жирных кислот и кетоновых тел, биосинтеза АТФ.

    3. Декарбоксилирование с образованием биологически активных биогенных аминов (дофамин, норадреналин и адреналин (синтезируются изначально из аминокислоты тирозина), серотонин, мелатонин и триптамин (синтезируются из триптофана).

    4. Биосинтез нуклеотидов, порфиринов, гормонов.

    Трансаминирование и дезаминирование аминокислот

    В процессе трансаминирования аминогруппа переносится на кетокислоту, в роли которой выступает 2-кетоглутарат, пируват или оксалоацетат, которые образуют глутамат, аланин и аспартат соответственно. Далее аминогруппа аланина и аспартата переносится на 2-кетоглутарат с образованием глутамата (непрямое дезаминирование). Глутамат – единственная аминокислота подвергающаяся окислительному дезаминированию.

    Глюкогенные аминокислоты образуют одно из пяти соединений, которые через оксалоацетат вовлекаются в глюконеогенез. Кетогенные аминокислоты образуют ацетоацетат или ацетил-КоА. Ряд аминокислот дают метаболиты обоих видов и являются одновременно кетогенныи и глюкогенными.

    Декарбоксилирование аминокислот

    В результате отщепления карбоксильной группы аминокислоты образуют биогенные амины, многие из которых выполняют важные биологические функции.

    Так, серин образует этанолмаин, включаемый в состав фосфолипидов; глутамат – нейромедиатор γ-аминомасляную кислоту (ГАМК); гистидин – медиатор гистамин.

    Дезактивация биогенных аминов происходит путем их окислительного дезаменирования и дальнейшего окисления в карбоновые кислоты.

    Двенадцать из двадцати аминокислот могут быть синтезированы de novo в организме. При этом цистеин и тирозин образуются из незаменимых метионина и фенилаланина, а аргинин и гистидин синтезируются в незначительных количествах. Оставшиеся восемь получаются в результате переноса аминогруппы глутамата на кетокислоты-предшественники

    реакция в обмене аминок-т 11рис

    Вещества, образованные при внутриклеточном гидролизе или проникающие в клетку из крови, на втором этапе обычно превращаются в пировиноградную кислоту, ацетильную группу (в составе ацетил-S-КоА) и в некоторые другие мелкие органические молекулы. Локализация второго этапа – цитозоль и митохондрии. Часть энергии рассеивается в виде тепла и примерно 13% энергии вещества усваивается, т.е. запасается в виде макроэргических связей АТФ Ацетил-SКоА включается в реакции цикла трикарбоновых кислот и окисляется до углекислого газа. Выделенные атомы водорода соединяются с НАД и ФАД и восстанавливают их. После этого НАДН и ФАДН2 переносят водород в цепь дыхательных ферментов, расположенную на внутренней мембране митохондрий. Здесь в результате процесса под названием "окислительное фосфорилирование" образуется вода и главный продукт биологического окисления – АТФ.

    33.ПЕРЕАМИНИРОВАНИЕ (трансаминирование), обратимый перенос аминогруппы из молекулы одного орг. соед. в молекулу другого . Наиб. роль переаминирование играет в биохимии в процессах метаболизма азотистых оснований. Переаминирование аминокислот может происходить и вне клетки в присут. пиридоксаль-5"-фосфата, однако скорость р-ции в 106 раз меньше.

    Часть аминокислот, поступивших в избыточном количестве с пищей, либо образовавшиеся в результате распада тканевых белков, теряют аминогруппу и превращаются в кетокислоту.

    В процессе трансаминирования (рис.10) аминогруппа переносится на кетокислоту, в роли которой выступает 2-кетоглутарат, пируват или оксалоацетат, которые образуют глутамат, аланин и аспартат соответственно. Далее аминогруппа аланина и аспартата переносится на 2-кетоглутарат с образованием глутамата (непрямое дезаминирование). Глутамат – единственная аминокислота подвергающаяся окислительному дезаминированию.

    В результате дезаминирования аминогруппа отщепляется в виде аммиака, который метаболизируется печенью.

    Углеродные скелеты аминокислот могут быть вовлечены в ЦТК и окислены до конечных продуктов, либо использованы для биосинтеза глюкозы (глюкогенные аминокислоты), жирных кислот или кетоновых тел (кетогенные аминокислоты).

    Глюкогенные аминокислоты образуют одно из пяти соединений, которые через оксалоацетат вовлекаются в глюконеогенез.

    Кетогенные аминокислоты образуют ацетоацетат или ацетил-КоА. Ряд аминокислот дают метаболиты обоих видов и являются одновременно кетогенныи и глюкогенными (пролин, лейцин и др).

    Нарушение нормального течения переаминирования в организме наблюдается при патологич. состояниях, напр. при инфаркте миокарда, заболеваниях печени. Контроль концентрации аминотрансфераз используется в этих случаях как ср-во диагностики.
    ДЕЗАМИНИРОВАНИЕ (деаминирование), удаление группы NH2 из молекул орг. соединений. Сопровождается замещением аминогруппы на др. группу или образованием кратной связи. Осуществляется под действием HNO2, нитрозилсерной к-ты, N2O3, N2O4, H2O, H2, а также ферментов.

    34. Образование аммиака. Транспорт аммиака.Восстановительное аминирование. Амиды и их физиологическое значение.

    БИОГЕННЫЕ АМИНЫ Образуются при декарбоксилировании аминокислот. Биогенные амины (БА) являются непептидными азотсодержащими производными аминокислот. К ним относятся гормоны надпочечников (адреналин, норадреналин), щитовидной железы (тироксин, трийодтиронин), медиаторы ЦНС (ацетилхолин, ГАМК, дофамин), медиатор воспаления (гистамин), этаоламин, аминопропанол и др. Некоторые из этих соединений являются составными частями других биомолекул.

    Амины, образовавшиеся при декарбоксилировании аминокислот, часто являются биоактивными веществами.

    Серотонин – нейромедиатор проводящих путей. Образуется в надпочечниках и ЦНС.

    Аминомасляная кислота (ГАМК). В нервных клетках декарбоксилирование глутамата приводит к образованию ГАМК, которая служит основным тормозным медиатором высших отделов мозга.

    Аминомасляная кислота (ГАМК). В нервных клетках декарбоксилирование глутамата приводит к образованию ГАМК, которая служит основным тормозным медиатором высших отделов мозга.

    Гистамин выполняет в организме человека следующие функции: --стимулирует секрецию желудочного сока, слюны; --повышает проницаемость капилляров, вызывает отеки, снижает АД; --сокращает гладкую мускулатуру легких, вызывает удушье; --участвует в формировании воспалительной реакции – вызывает расширение сосудов, покраснение кожи, отечность ткани; – вызывает аллергическую реакцию; -выполняет роль нейромедиатора; -является медиатором боли.

    реакция в обмене аминок-т рис13

    Восстановительное аминирование - это превращение кетонов в соответствующие им амины.

    35. Особенности обмена отдельных аминокислот и их роль в образовании важнейших биологически активных веществ.

    СПЕЦИФИЧЕСКИЕ ПУТИ ОБМЕНА ОТДЕЛЬНЫХ АМИНОКИСЛОТ. Эти пути обмена определяются различиями в строении радикалов аминокислот, поэтому они разнообразны и многочисленны. Вступая в эти специфические реакции, АК-ты принимают участие во многих важных процессах:а) в синтезе гормонов и нейромедиаторов, б) в синтезе простетических групп сложных белков - хромопротеинов и нуклеопротеинов, в) в синтезе сложных липидов, г) синтезе веществ, содержащих макроэргическую связь и являющихся источником энергии для клеток, д) в обезвреживании токсических веществ.
    ОБМЕН ГЛИЦИНА И СЕРИНА.Это заменимые аинокислоты, которые превращаются друг в друга.Основным путем распада глицина является его распад на СО2, Н2О и метилен-ТГФК (активный С1):
    Активный С1, образовавшийся из глицина участвует в синтезе пуриновых азотистых оснований. Кроме того, глицин всей своей молекулой участвует в синтезе гема гемоглобина и других гемопротеинов, в синтезе пуриновых азотистых оснований, в синтезе парных желчных кислот (гликохолевая кислота), в синтезе креатина, в синтезе трипептида глютатиона. Также глицин в печени участвует в обезвреживании бензойной кислоты, которая превращается в гиппуровую кислоту:

    ОБМЕН СЕРУСОДЕРЖАЩИХ АМИНОКИСЛОТ: МЕТИОНИНА И ЦИСТЕИНА.Метионин - это незаменимая аминокислота, а цистеин - заменимая.S-аденозил-метионин участвует в реакциях трансметилирования. Наиболее важный из них синтез фосфатидилхолина из фосфатидилэтаноламина, обезвреживание биогенных аминов с участием О-метилтрансфераз, синтез адреналина из норадреналина, синтез ацетилхолина из холина и Ацетил-КоА, синтез креатина, который в виде креатинфосфата является резервной формой макроэргических связей и участвует в обеспечении нервной ткани и работающей мышцы АТФ.
    Синтез креатина. В синтезе креатина участвуют и другие аминокислоты - аргинин и глицин. В почках из аргинина и глицина образуется гуанидинацетат, который метилируется в печени с участием S-аденозил-метионина и в результате образуется креатин:
    Гомоцистеин участвует в синтезе амикислот - цистеина (гомоцистеин + серин). Креатин подвергается фосфорилированию с участием АТФ, в результате образуется соединение с макроэргической связью - креатинфосфат. Это обратимая реакция, которая катализируется ферментом креатинфосфокиназой (КФК).
    ОБМЕН ЦИСТЕИНА.Это заменимая аминокислота, она синтезируется из серина, гидроксильная группа которого замещается SН-группой, которую поставляет гомоцистеин. Цистеин в составе белков-ферментов своей -SН группой участвует в образовании каталитического центра (тиоловые протеазы), а также участвует в образовании дисульфидных связей, которые принимают участие в формировании третичной и четвертичной структуры белков. Также цистеин необходим для синтеза трипептида глютатиона, который состоит из цистеина и глютаминовой кислоты. Молекула глутатиона условно обозначается как (Г-SН). Глютатион способен легко окисляться и восстанавливаться:Окисляясь, глютатион предохраняет от окисления другие вещества, например, двухвалентное железо гемоглобина в эритроцитах:Цистеин подвергается и распаду, при этом он окисляется и декарбоксилируется, в результате образуется таурин, который участвует в образовании парных желчных кислот (таурохолевая и др.) в печени. Серная кислота, которая образуется из таурина, участвует в обезвреживании токсических веществ в печени.
    ОБМЕН АРГИНИНА Аргинин - частично незаменимая аминокислота. Она образуется в ходе синтеза мочевины в печени из карбомоилфосфата при участии аспарагиновой кислоты и орнитина. Аргинин участвует в синтезе креатина в почках, являясь донором гуанидиновой группы в образовании гуанидинацетата. В составе белков аргинин как полярная положительно заряженная аминокислота участвует в образовании ионных связей и в формировании гидратной оболочки белков.
    КОНКРЕТНАЯ РОЛЬ КАЖДОЙ АМИНОКИСЛОТЫ:Глутаминовая кислотаа) подвергается прямому окислительному дезаминированиюс образованием альфа-кетоглутарата,б) вступает в реакции трансаминирования, которые катализируют специфические трансаминазы,в) является субстратом для синтеза глютамина, который является транспортной формой аммиака и участвует в синтезе мочевины в печени, также глютамин участвует в синтезе пуриновых оснований нуклеотидов и нуклеиновых кислот, аминосахаров и аминопроизводных липидов.г) принимает участие в косвенном дезаминировании АК-т,д) участвует в синтезе трипептида глютатиона,е) является субстратом для образования гамма- аминомасляной кислоты.
    Аспарагиновая кислотаа) участвует в реакциях трансаминирования,б) в синтезе мочевины, как донор NН2-группы,в) в синтезе пиримидиновых оснований (всей молекулой) и как донор NН2-группы - в синтезе пуриновых оснований,г) в синтезе аспарагина.
    Обе аминокислоты участвуют в формировании третичной и четвертичной структур белков, так как являются полярными заряженными аминокислотами и в образовании гидратной оболочки белков, а также эти аминокислоты принимают участие в формировании активных центров ферментов. Амидирование аспарагиновой и глутаминовой кислот приводит к образованию глутамина и аспарагина, необходимых для синтеза белков.

    ОБМЕН ЦИКЛИЧЕСКИХ АМИНОКИСЛОТ ФЕНИЛАЛАНИНА И ТИРОЗИНАФенилаланин является незаменимой аминокислотой, а тирозин - заменимая аминокислота.Тирозин вступает в многочисленные реакции в различных тканях. В результате этих превращений тирозин не только распадается до конечных продуктов, но и дает промежуточные метаболиты, из которых образуются ряд важных соединений, некоторые из которых являются биологически активными веществами. Из тирозина образуются:а) гормоны мозгового слоя надпочечников адреналин и норадреналин,б) меланины - пигменты кожи, волос, радужной оболочки глаза,в) йодсодержащие гормоны щитовидной железы - тироксин и трийодтиронин.

    фенилкетонурия - нарушен синтез фенилаланин-гидроксилазы, поэтому фенилаланин превращается в фенилпируват, который оказывает токсическое воздействие на развитие некоторых отделов головного мозга.2) альбинизм - нарушен синтез ферментов, превращающих ДОФА в ДОФА-хром, поэтому нарушается синтез меланинов. 3) алкаптонурия - нарушен синтез диоксигеназы гомогентизиновой кислоты, она выделяется с мочой, моча приобретает черный цвет.4) кретинизм - нарушен синтез йодиназы, что приводит к нарушению синтеза йодсодержащих гормонов щитовидной железы.5) может быть нарушен синтез фермента тирозиназы, который катализирует превращение тирозина в ДОФА, следовательно будет нарушаться синтез гормонов мозгового слоя надпочечников и меланина.Из всех этих заболеваний в настоящее время удается лечить фенилкетонурию, для этого из рациона ребенка исключают фенилаланин и увеличивают в пище количество тирозина. Если ребенка держать на этой диете до 6-7 лет, тогда не возникает умственная отсталость, т.к. к 6-7 годам успевают развиться отделы головного мозга, развитие которых задерживается при избытке в ткани мозга фенилпирувата.

    36.Биосинтез мочевины. Орнитиновый цикл мочевинообразования.

    Образующийся в результате реакций дезаминирования аммиак является токсичным для организма. Его дезактивация с образованием нетоксичных мочевины и креатина происходит в печени, куда он предварительно должен быть транспортирован кровью. Трансортными формами аммиака являются аспарагин и глутамин, образующиеся амидированием аспартата и глутамата. Реакции катализируются аспарагин- и глутаминсинтетазой. В печени аспарагиназа и глутаминаза отщепляют амидную группу в виде аммиака.

    В печени аммиак карбоксилируется с образованием карбамоилфосфата, который вовлекается в орнитиновый цикл. На последнем этапе этого процесса образуется аргинин, который распадается на орнитин и мочевину, либо преобразуется в креатин. В мышцах креатин фосфорилируется и используется в качестве донора фосфатной группы при регенерировании АТФ из АДФ. Образовавшиеся креатинин и мочевина выводятся из организма.

    В карте обмена АК-т от аммиака до карбамоил-фосфата к мочеине.

    Различные виды ДНК и РНК - нуклеиновых кислот - это один из объектов изучения молекулярной биологии. Одним из наиболее многообещающих и быстро развивающихся направлений в этой науке в последние годы стало исследование РНК.

    Кратко о строении РНК

    Итак, РНК, рибонуклеиновая кислота, - это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу - полинуклеотид. Так образуется первичная структура РНК.

    Вторичная структура - образование двойной цепочки - образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином - тройной водородной связи.

    В рабочей форме молекула РНК образует также третичную структуру - особое пространственное строение, конформацию.

    Синтез РНК

    Все виды РНК синтезируются при помощи фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК, так и на РНК-матрице.

    Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода и протекает в несколько этапов.

    Сначала происходит узнавание и связывание РНК-полимеразы с особой последовательностью нуклеотидов на ДНК - промотором, после чего двойная спираль ДНК раскручивается на небольшом участке и начинается сборка молекулы РНК над одной из цепочек, называемой матричной (другая цепочка ДНК называется кодирующей - именно ее копией является синтезируемая РНК). Асимметричность промотора определяет, какая из цепочек ДНК будет служить матрицей, и тем самым позволяет РНК-полимеразе инициировать синтез в правильном направлении.

    Следующий этап называется элонгацией. Транскрипционный комплекс, включающий РНК-полимеразу и расплетенный участок с гибридом ДНК-РНК, начинает движение. По мере этого перемещения наращиваемая цепочка РНК постепенно отделяется, а двойная спираль ДНК расплетается перед комплексом и восстанавливается за ним.

    Завершающий этап синтеза наступает, когда РНК-полимераза достигает особого участка матрицы, называемого терминатором. Терминация (окончание) процесса может достигаться различными способами.

    Основные виды РНК и их функции в клетке

    Они следующие:

    • Матричная или информационная (мРНК). Посредством ее осуществляется транскрипция - перенос генетической информации с ДНК.
    • Рибосомная (рРНК), обеспечивающая процесс трансляции - синтез белка на матрице мРНК.
    • Транспортная (тРНК). Производит узнавание и транспортировку аминокислоты на рибосому, где происходит синтез белка, а также принимает участие в трансляции.
    • Малые РНК - обширный класс молекул небольшой длины, осуществляющих разнообразные функции в ходе процессов транскрипции, созревания РНК, трансляции.
    • РНК-геномы - кодирующие последовательности, которые содержат генетическую информацию у некоторых вирусов и вироидов.

    В 1980-х годах была открыта каталитическая активность РНК. Молекулы, обладающие этим свойством, получили название рибозимов. Естественных рибозимов пока известно не так много, каталитическая способность их ниже, чем у белков, однако в клетке они выполняют исключительно важные функции. В настоящее время ведутся успешные работы по синтезу рибозимов, имеющие в том числе и прикладное значение.

    Остановимся подробнее на различных видах молекул РНК.

    Матричная (информационная) РНК

    Эта молекула синтезируется над расплетенным участком ДНК, копируя таким образом ген, кодирующий тот или иной белок.

    РНК эукариотических клеток, прежде чем стать, в свою очередь, матрицей для синтеза белка, должны созреть, то есть пройти через комплекс различных модификаций - процессинг.

    Прежде всего, еще на стадии транскрипции, молекула подвергается кэпированию: к ее концу присоединяется особая структура из одного или нескольких модифицированных нуклеотидов - кэп. Он играет важную роль во многих последующих процессах и повышает стабильность мРНК. К другому концу первичного транскрипта присоединяется так называемый поли(А)хвост - последовательность адениновых нуклеотидов.

    После этого пре-мРНК подвергается сплайсингу. Это удаление из молекулы некодирующих участков - интронов, которых много в ДНК эукариот. Далее происходит процедура редактирования мРНК, при которой химически модифицируется ее состав, а также метилирование, после чего зрелая мРНК покидает клеточное ядро.

    Рибосомная РНК

    Основу рибосомы - комплекса, обеспечивающего белковый синтез, составляют две длинные рРНК, которые образуют субчастицы рибосомы. Синтезируются они совместно в виде одной пре-рРНК, которая затем в ходе процессинга разделяется. В большую субчастицу входит также низкомолекулярная рРНК, синтезируемая с отдельного гена. Рибосомные РНК обладают плотно упакованной третичной структурой, которая служит каркасом для белков, присутствующих в рибосоме и выполняющих вспомогательные функции.

    В нерабочей фазе субъединицы рибосомы разделены; при инициации трансляционного процесса рРНК малой субчастицы соединяется с матричной РНК, после чего происходит полное объединение элементов рибосомы. При взаимодействии РНК малой субчастицы с мРНК последняя как бы протягивается через рибосому (что равнозначно движению рибосомы по мРНК). Рибосомная РНК большой субчастицы является рибозимом, то есть обладает ферментными свойствами. Она катализирует образование пептидных связей между аминокислотами в ходе синтеза белка.

    Следует отметить, что наибольшая часть всей РНК в клетке приходится на долю рибосомной - 70-80 %. ДНК обладает большим количеством генов, кодирующих рРНК, что обеспечивает весьма интенсивную ее транскрипцию.

    Транспортная РНК

    Эта молекула распознается определенной аминокислотой при помощи особого фермента и, соединяясь с ней, производит транспортировку аминокислоты на рибосому, где служит посредником в процессе трансляции - синтеза белка. Перенос осуществляется путем диффузии в цитоплазме клетки.

    Вновь синтезированные молекулы тРНК, так же как и другие виды РНК, подвергаются процессингу. Зрелая тРНК в активной форме имеет конформацию, напоминающую клеверный лист. На «черешке» листа - акцепторном участке - расположена последовательность ЦЦА с гидроксильной группой, которая связывается с аминокислотой. На противоположном конце «листа» находится антикодоновая петля, которая соединяется с комплементарным кодоном на мРНК. D-петля служит для связывания транспортной РНК с ферментом при взаимодействии с аминокислотой, а Т-петля - для связывания с большой субчастицей рибосомы.

    Малые РНК

    Эти виды РНК играют важную роль в клеточных процессах и сейчас активно изучаются.

    Так, например, малые ядерные РНК в клетках эукариот участвуют в сплайсинге мРНК и, возможно, обладают каталитическими свойствами наряду с белками сплайсосом. Малые ядрышковые РНК участвуют в процессинге рибосомной и транспортной РНК.

    Малые интерферирующие и микроРНК являются важнейшими элементами системы регуляции экспрессии генов, необходимой клетке для контроля собственной структуры и жизнедеятельности. Эта система - важная часть иммунного антивирусного ответа клетки.

    Существует также класс малых РНК, функционирующих в комплексе с белками Piwi. Эти комплексы играют огромную роль в развитии клеток зародышевой линии, в сперматогенезе и в подавлении мобильных генетических элементов.

    РНК-геном

    Молекула РНК может использоваться в качестве генома большинством вирусов. Вирусные геномы бывают различными - одно- и двухцепочечными, кольцевыми или линейными. Также РНК-геномы вирусов часто бывают сегментированы и в целом короче, чем ДНК-содержащие геномы.

    Существует семейство вирусов, генетическая информация которых, закодированная в РНК, после инфицирования клетки путем обратной транскрипции переписывается на ДНК, которая затем внедряется в геном клетки-жертвы. Это так называемые ретровирусы. К ним, в частности, относится вирус иммунодефицита человека.

    Значение исследования РНК в современной науке

    Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она - необходимый и важнейший элемент внутриклеточной жизнедеятельности. Множество процессов первостепенной значимости не обходятся без активного участия РНК. Механизмы таких процессов долгое время оставались неизвестными, но благодаря исследованию различных видов РНК и их функций постепенно проясняются многие детали.

    Не исключено, что РНК сыграла решающую роль в возникновении и становлении жизни на заре истории Земли. Результаты недавних исследований говорят в пользу этой гипотезы, свидетельствуя о необычайной древности многих механизмов функционирования клетки с участием тех или иных видов РНК. Например, недавно открытые рибопереключатели в составе мРНК (система безбелковой регуляции активности генов на стадии транскрипции), по мнению многих исследователей, являются отголосками эпохи, когда примитивная жизнь строилась на основе РНК, без участия ДНК и белков. Также весьма древним компонентом системы регуляции считаются микроРНК. Особенности структуры каталитически активной рРНК свидетельствуют о ее постепенной эволюции путем присоединения новых фрагментов к древней проторибосоме.

    Тщательное изучение того, какие виды РНК и каким образом заняты в тех или иных процессах, исключительно важно также для теоретических и прикладных областей медицины.

    Понравилась статья? Поделитесь ей