Контакты

Корни квадратного уравнения формула виета. Устное решение квадратных уравнений и теорема виета. Докажем это уравнение

Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

Если более подробно, то теорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

Доказательство теоремы Виета

Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно, .

Допустим у нас есть уравнение: . У этого уравнения есть такие корни: и . Докажем, что , .

По формулам корней квадратного уравнения:

1. Найдём сумму корней:

Разберём это уравнение, как оно у нас получилось именно таким:

= .

Шаг 1 . Приводим дроби к общему знаменателю, получается:

= = .

Шаг 2 . У нас получилась дробь, где нужно раскрыть скобки:

Сокращаем дробь на 2 и получаем:

Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

2. Найдём произведение корней:

= = = = = .

Докажем это уравнение:

Шаг 1 . Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

Теперь вспоминаем определение квадратного корня и считаем:

= .

Шаг 3 . Вспоминаем дискриминант квадратного уравнения: . Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем , тогда получается:

= .

Шаг 4 . Раскрываем скобки и приводим подобные слагаемые к дроби:

Шаг 5 . Сокращаем «4a» и получаем .

Вот мы и доказали соотношение для произведения корней по теореме Виета.

ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

Теорема, обратная теореме Виета

По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.

Если числа и такие:

И , тогда они и есть корнями квадратного уравнения .

Доказательство обратной теоремы Виета

Шаг 1. Подставим в уравнение выражения для его коэффициентов:

Шаг 2. Преобразуем левую часть уравнения:

Шаг 3 . Найдём Корни уравнения , а для этого используем свойство о равенстве произведения нулю:

Или . Откуда и получается: или .

Примеры с решениями по теореме Виета

Пример 1

Задание

Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.

Решение

Шаг 1 . Вспомним формулу дискриминанта . Подставляем наши цифры под буквы. То есть, , – это заменяет , а . Отсюда следует:

Получается:

Title="Rendered by QuickLaTeX.com" height="13" width="170" style="vertical-align: -1px;">. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма , а произведение .

Выразим сумму квадратов корней через их сумму и произведение:

Ответ

7; 12; 25.

Пример 2

Задание

Решите уравнение . При этом не применяйте формулы квадратного уравнения.

Решение

У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

Ответ

И Пример 4

Задание

Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

Решение

По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

Сумма корней нового уравнения будет равна:

А произведение .

По теореме, обратной теореме Виета, новое уравнение имеет вид:

Ответ

Получилось уравнение, каждый корень которого в два раза больше:

Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член – число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

Полезные источники:

  1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
  2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
  3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

Теорема Виета, обратная формула Виета и примеры с решением для чайников обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

В восьмом классе, учащиеся знакомятся с квадратными уравнениями и способами их решения. При этом, как показывает опыт, большинство учащихся при решении полных квадратных уравнений применяют только один способ – формулу корней квадратного уравнения. Для учеников, хорошо владеющих навыками устного счета, этот способ явно нерационален. Решать квадратные уравнения учащимся приходится часто и в старших классах, а там тратить время на расчет дискриминанта просто жалко. На мой взгляд, при изучении квадратных уравнений, следует уделить больше времени и внимания применению теоремы Виета (по программе А.Г. Мордковича Алгебра-8, на изучение темы “Теорема Виета. Разложение квадратного трехчлена на линейные множители” запланировано только два часа).

В большинстве учебников алгебры эта теорема формулируется для приведенного квадратного уравнения и гласит, что если уравнение имеет корни и , то для них выполняются равенства , . Затем формулируется утверждение, обратное к теореме Виета, и предлагается ряд примеров для отработки этой темы.

Возьмем конкретные примеры и проследим на них логику решения с помощью теоремы Виета.

Пример 1. Решить уравнение .

Допустим, это уравнение имеет корни, а именно, и . Тогда по теореме Виета одновременно должны выполняться равенства

Обратим внимание, что произведение корней – положительное число. А значит, корни уравнения одного знака. А так как сумма корней также является положительным числом, делаем вывод, что оба корня уравнения – положительные. Вернемся снова к произведению корней. Допустим, что корни уравнения – целые положительные числа. Тогда получить верное первое равенство можно только двумя способами (с точностью до порядка множителей): или . Проверим для предложенных пар чисел выполнимость второго утверждения теоремы Виета: . Таким образом, числа 2 и 3 удовлетворяют обоим равенствам, а значит, и являются корнями заданного уравнения.

Ответ: 2; 3.

Выделим основные этапы рассуждений при решении приведенного квадратного уравнения с помощью теоремы Виета:

записать утверждение теоремы Виета (*)
  • определить знаки корней уравнения (Если произведение и сумма корней – положительные, то оба корня – положительные числа. Если произведение корней – положительное число, а сумма корней – отрицательное, то оба корня – отрицательные числа. Если произведение корней – отрицательное число, то корни имеют разные знаки. При этом, если сумма корней – положительная, то больший по модулю корень является положительным числом, а если сумма корней меньше нуля, то больший по модулю корень – отрицательное число);
  • подобрать пары целых чисел, произведение которых дает верное первое равенство в записи (*);
  • из найденных пар чисел выбрать ту пару, которая при подстановке во второе равенство в записи (*) даст верное равенство;
  • указать в ответе найденные корни уравнения.

Приведем еще примеры.

Пример 2. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – положительное, а сумма – отрицательное число. Значит, оба корня – отрицательные числа. Подбираем пары множителей, дающих произведение 10 (-1 и -10; -2 и -5). Вторая пара чисел в сумме дает -7. Значит, числа -2 и -5 являются корнями данного уравнения.

Ответ: -2; -5.

Пример 3. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – отрицательное. Значит, корни – разного знака. Сумма корней – также отрицательное число. Значит, больший по модулю корень – отрицательный. Подбираем пары множителей, дающих произведение -10 (1 и -10; 2 и -5). Вторая пара чисел в сумме дает -3. Значит, числа 2 и -5 являются корнями данного уравнения.

Ответ: 2; -5.

Заметим, что теорему Виета в принципе можно сформулировать и для полного квадратного уравнения: если квадратное уравнение имеет корни и , то для них выполняются равенства , . Однако применение этой теоремы довольно проблематично, так как в полном квадратном уравнении по крайней мере один из корней (при их наличии, конечно) является дробным числом. А работать с подбором дробей долго и трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение . Умножим обе части уравнения на первый коэффициент а и запишем уравнение в виде . Введем новую переменную и получим приведенное квадратное уравнение , корни которого и (при их наличии) могут быть найдены по теореме Виета. Тогда корни исходного уравнения будут . Обратим внимание, что составить вспомогательное приведенное уравнение очень просто: второй коэффициент сохраняется, а третий коэффициент равен произведению ас . При определенном навыке учащиеся сразу составляют вспомогательное уравнение, находят его корни по теореме Виета и указывают корни заданного полного уравнения. Приведем примеры.

Пример 4. Решите уравнение .

Составим вспомогательное уравнение и по теореме Виета найдем его корни . А значит, корни исходного уравнения .

Ответ: .

Пример 5. Решите уравнение .

Вспомогательное уравнение имеет вид . По теореме Виета его корни . Находим корни исходного уравнения .

Ответ: .

И еще один случай, когда применение теоремы Виета позволяет устно найти корни полного квадратного уравнения. Нетрудно доказать, что число 1 является корнем уравнения , тогда и только тогда, когда . Второй корень уравнения находится по теореме Виета и равен . Еще одно утверждение: чтобы число –1 являлось корнем уравнения необходимо и достаточно, чтобы . Тогда второй корень уравнения по теореме Виета равен . Аналогичные утверждения можно сформулировать и для приведенного квадратного уравнения.

Пример 6. Решите уравнение .

Заметим, что сумма коэффициентов уравнения равна нулю. Значит, корни уравнения .

Ответ: .

Пример 7. Решите уравнение .

Для коэффициентов этого уравнения выполняется свойство (действительно, 1-(-999)+(-1000)=0). Значит, корни уравнения .

Ответ: ..

Примеры на применение теоремы Виета

Задание 1. Решите приведенное квадратное уравнение с помощью теоремы Виета.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 2. Решите полное квадратное уравнение с помощью перехода к вспомогательному приведенному квадратному уравнению.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 3. Решите квадратное уравнение с помощью свойства .

Теорема Виета (точнее, теорема, обратная теореме Виета) позволяет сократить время на решение квадратных уравнений. Только надо уметь ею пользоваться. Как научиться решать квадратные уравнения по теореме Виета? Это несложно, если немного порассуждать.

Сейчас мы будем говорить только о решении по теореме Виета приведенного квадратного уравнения.Приведенное квадратное уравнение — это уравнение, в котором a, то есть коэффициент перед x², равен единице. Не приведенные квадратные уравнения решить по теореме Виета тоже можно, но там уже, как минимум, один из корней — не целое число. Их угадывать сложнее.

Теорема, обратная теореме Виета, гласит: если числа x1 и x2 таковы, что

то x1 и x2 — корни квадратного уравнения

При решении квадратного уравнения по теореме Виета возможны всего 4 варианта. Если запомнить ход рассуждений, находить целые корни можно научиться очень быстро.

I. Если q — положительное число,

это означает, что корни x1 и x2 — числа одинакового знака (поскольку только при умножении чисел с одинаковыми знаками получается положительное число).

I.a. Если -p — положительное число, (соответственно, p<0), то оба корня x1 и x2 — положительные числа (поскольку складывали числа одного знака и получили положительное число).

I.b. Если -p — отрицательное число, (соответственно, p>0), то оба корня — отрицательные числа (складывали числа одного знака, получили отрицательное число).

II. Если q — отрицательное число,

это значит, что корни x1 и x2 имеют разные знаки (при умножении чисел отрицательное число получается только в случае, когда знаки у множителей разные). В этом случае x1+x2 является уже не суммой, а разностью (ведь при сложении чисел с разными знаками мы вычитаем из большего по модулю меньшее). Поэтому x1+x2 показывает, на сколько одно отличаются корни x1 и x2, то есть, на сколько один корень больше другого (по модулю).

II.a. Если -p — положительное число, (то есть p<0), то больший (по модулю) корень — положительное число.

II.b. Если -p — отрицательное число, (p>0), то больший (по модулю) корень — отрицательное число.

Рассмотрим решение квадратных уравнений по теореме Виета на примерах.

Решить приведенное квадратное уравнение по теореме Виета:

Здесь q=12>0, поэтому корни x1 и x2 — числа одного знака. Их сумма равна -p=7>0, поэтому оба корня — положительные числа. Подбираем целые числа, произведение которых равно 12. Это 1 и 12, 2 и 6, 3 и 4. Сумма равна 7 у пары 3 и 4. Значит, 3 и 4 — корни уравнения.

В данном примере q=16>0, значит, корни x1 и x2 — числа одного знака. Их сумма -p=-10<0, поэтому оба корня — отрицательные числа. Подбираем числа, произведение которых равно 16. Это 1 и 16, 2 и 8, 4 и 4. Сумма 2 и 8 равна 10, а раз нужны отрицательные числа, то искомые корни — это -2 и -8.

Здесь q=-15<0, что означает, что корни x1 и x2 — числа разных знаков. Поэтому 2 — это уже не их сумма, а разность, то есть числа отличаются на 2. Подбираем числа, произведение которых равно 15, отличающиеся на 2. Произведение равно 15 у 1 и 15, 3 и 5. Отличаются на 2 числа в паре 3 и 5. Поскольку -p=2>0, то бОльшее число положительно. Значит, корни 5 и -3.

q=-36<0, значит, корни x1 и x2 имеют разные знаки. Тогда 5 — это то, насколько отличаются x1 и x2 (по модулю, то есть пока что без учета знака). Среди чисел, произведение которых равно 36: 1 и 36, 2 и 18, 3 и 12, 4 и 9 — выбираем пару, в которой числа отличаются на 5. Это 4 и 9. Осталось определить их знаки. Поскольку -p=-5<0, бОльшее число имеет знак минус. Поэтому корни данного уравнения равны -9 и 4.

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Содержание

См. также: Корни квадратного уравнения

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

См. также:

Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.

Понравилась статья? Поделитесь ей