Контакты

Джеймс клерк максвелл - биография. Самые интересные открытия джеймса максвелла Джеймс максвелл достижения в физике

Биография

Родился в семье шотландского дворянина из знатного рода Клерков (Clerks).

Учился сначала в Эдинбургской академии, Эдинбургском университете (1847-1850), затем в Кембриджском (1850-1854) университете (Питерхауз и Тринити-колледж).

Научная деятельность

Свою первую научную работу Максвелл выполнил ещё в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов , выступая как продолжатель теории Юнга и теории трёх основных цветов Гельмгольца . В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - жёлтым, он казался оранжевым; смешивание синего и жёлтого создавало впечатление зелёного. В 1860 году за работы по восприятию цвета и оптике Максвелл был награждён медалью Румфорда.

Одной из первых работ Максвелла стала его кинетическая теория газов . В 1859 году учёный выступил на заседании Британской ассоциации с докладом, в котором привёл распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р. Клаузиуса , который ввёл понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, то есть в соответствии со статистикой Гаусса». В рамках своей теории Максвелл объяснил закон Авогадро , диффузию , теплопроводность , внутреннее трение (теория переноса). В 1867 показал статистическую природу второго начала термодинамики («демон Максвелла »).

В 1831, в год рождения Максвелла, М. Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции . Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие учёные, как А. М. Ампер и Ф. Нейман, придерживались концепции дальнодействия , рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий , которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле , по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе «Фарадеевы силовые линии» (Faraday’s Lines of Force , 1857). В 1860-1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришёл к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, то есть должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3,4*10 10 см/с, что близко к скорости света , измеренной семью годами ранее французским физиком А. Физо . В октябре 1861 Максвелл сообщил Фарадею о своём открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, то есть разновидность электромагнитных волн . Этот завершающий этап исследований изложен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвёл знаменитый Трактат об электричестве и магнетизме (1873).

Теория электромагнитного поля и, в особенности, следующий из неё вывод о существовании электромагнитных волн при жизни Максвелла оставались чисто теоретическими положениями, не имевшими никакого экспериментального подтверждения, и современниками зачастую воспринимались как «игра ума». В 1887г. немецкий физик Генрих Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла.

Последние годы жизни Максвелл занимался подготовкой к печати и изданием рукописного наследия Кавендиша. Два больших тома вышли в октябре 1879.

Джеймс Максвелл

Биография

Эдинбург. 1831-1850 ……………………………………………………………..3

Детство и школьные годы

Первое открытие

Эдинбургский университет …………………………………………………….4

Кембридж. 1850-1856 ……………………………………………………………5

Занятия электричеством

Абердин. 1856-1860 ………………………………………………………………7 Трактат о кольцах Сатурна

Лондон – Гленлейр. 1860-1871 ………………………………………………….9

Первая цветная фотография

Теория вероятностей

Механическая модель Максвелла

Кембридж 1871-1879 ……………………………………………………………11

Кавендишская лаборатория

Мировое признание

Список использованной литературы ………………………………………..13

Эдинбург. 1831-1850

Детство и школьные годы

13 июня 1831г. в Эдинбурге в доме номер 14 по улице Индии Франсез Кей, дочь эдинбургского судьи, после замужества – миссис Клерк Максвелл, родила сына Джеймса. В этот день во всем мире не произошло ничего сколько-нибудь значительного, еще не свершилось главное событие 1831 года. Но уже одиннадцать лет гениальный Фарадей пытается постичь тайны электромагнетизма, и лишь сейчас, летом 1831 года, он напал на след ускользающей электромагнитной индукции, и Джеймсу будет всего лишь четыре месяца, когда Фарадей подведет итог своему эксперименту «по получению электричества из магнетизма». И тем самым откроет новую эпоху – эпоху электричества. Эпоху, для которой предстоит жить и творить маленькому Джеймсу, потомку славных родов шотландских Клерков и Максвеллов.

Отец Джеймса, Джон Клерк Максвелл, адвокат по профессии, ненавидел юриспруденцию и питал неприязнь, как сам он говорил, к «грязным адвокатским делишкам». Как только случалась возможность, Джон прекращал бесконечное шарканье по мраморным вестибюлям Эдинбургского суда и посвящал себя научным экспериментам, которыми он между делом, по-любительски занимался. Он был дилетантом, сознавал это и тяжело переживал. Джон был влюблен в науку, в ученых, в людей практической сметки, в своего ученого деда Джорджа. Именно опыты сконструировать воздуходувные мехи, которые проводились совместно с братом Франсез Кей, свели его с будущей женой; свадьба состоялась 4 октября 1826 года. Воздуходувные мехи так никогда и не заработали, зато на свет появился сын Джеймс.

Когда Джеймсу было восемь, скончалась его мать, и он остался жить с отцом. Его детство заполнено природой, общением с отцом, книгами, рассказами о родных, «научными игрушками», первыми «открытиями». Родных Джеймса беспокоило то, что он не получает систематического образования: случайное чтение всего того, что есть в доме, уроки астрономии на крыльце дома и в гостиной, где Джеймс вместе с отцом построил «небесный глобус». После неудачной попытки обучения у частного преподавателя, от которого Джеймс часто сбегал к более увлекательным занятиям, было решено отправить его учиться в Эдинбург.

Несмотря на домашнее образование, Джеймс удовлетворял высоким требованиям Эдинбургской академии и был зачислен туда в ноябре 1841 года. Его успехи в классе были далеко не блестящи. Он легко мог бы выполнять задания лучше, но дух соревнования в малоприятных занятиях был для него глубоко чуждым. После первого же школьного дня он не сошелся с одноклассниками, и, поэтому, больше всего на свете Джеймс любил бывать один и рассматривать окружающие предметы. Одним из самых ярких событий, несомненно, скрасившее унылые школьные дни, было посещение вместе с отцом Эдинбургского королевского общества, где были выставлены первые «электромагнетические машины».

Эдинбургское королевское общество изменило жизнь Джеймса: именно там он получил первые понятия о пирамиде, кубе, других правильных многогранниках. Совершенство симметрии, закономерные превращения геометрических тел изменили понятие Джеймса об учении – он увидел в учении зерно красоты и совершенства. Когда пришло время экзаменов, ученики академии поразились – «Дуралей», как они называли Максвелла, стал одним из первых.

Первое открытие

Если раньше отец изредка брал Джеймса на свое любимое развлечение – заседания Эдинбургского королевского общества, то теперь посещения этого общества, а также Эдинбургского общества искусств вместе с Джеймсом стали для него регулярными и обязательными. В заседаниях Общества искусств самым известным, собирающим толпы людей лектором был мистер Д.Р.Хей, художник-декоратор. Именно его лекции натолкнули Джеймса на его первое серьезное открытие – простой инструмент для рисования овалов. Джеймс нашел оригинальный и в тоже время очень простой способ, а главное, абсолютно новый. Принцип своего метода он описал в коротенькой «статье», которая была прочитана в Эдинбургском королевском обществе – честь, которой добивались многие, а удостоился четырнадцатилетний школьник.

Эдинбургский университет

Оптико-механические исследования

В 1847 году обучение в Эдинбургской академии заканчивается, Джеймс – один из первых, забыты обиды и треволнения первых лет.

После окончания академии Джеймс поступает в Эдинбургский университет. В это же время он всерьез начинает интересоваться оптическими исследованиями. Утверждения Брюстера натолкнули Джеймса на мысль, что изучение пути лучей можно использовать для определения упругости среды в разных направлениях, для обнаружения напряжений в прозрачных материалах. Таким образом,

Рис.1 картина напряжений в стелянном треугольнике, полученная Джеймсом при помощи поляризованного света.

исследование механических напряжений можно свести к оптическому исследованию. Два луча, разделившиеся в напряженном прозрачном материале, будут взаимодействовать, рождая характерные красочные картины. Джеймс показал, что цветные картины носят вполне закономерный характер и могут быть использованы для расчетов, для проверки выведенных ранее формул, для выведения новых. Оказалось, что некоторые формулы неверны, или неточны, или нуждаются в поправках.

Более того, Джеймсу удалось вскрыть закономерности в тех случаях, где раньше не удавалось ничего сделать из-за математических трудностей. Прозрачный и нагруженный треугольник из неотпущенного стекла (рис.1) дал Джеймсу возможность исследовать напряжения и в этом, неподдавашемся расчету случае.

Девятнадцатилетний Джеймс Клерк Максвелл впервые поднялся на трибуну Эдинбургского королевского общества. Его доклад не мог остаться незамеченным: слишком много нового и оригинального содержал он.

1850-1856 Кембридж

Занятия электричеством

Теперь уже никто не ставил под сомнение одаренность Джеймса. Он явно перерос уже Эдинбургский университет и, поэтому, осенью 1850 года поступил в Кембридж. В январе 1854 года Джеймс заканчивает с отличием университет со степнью бакалавра. Он решает остаться в Кембридже для подготовки к профессорскому званию. Теперь, когда не нужно готовиться к экзаменам, он получает долгожданную возможность тратить все свое время на эксперименты, продолжает свои исследования в области оптики. Особенно его интересует вопрос об основных цветах. Первая статья Максвелла называлась «Теория цветов в связи с цветовой слепотой» и была даже собственно не статьей, а письмом. Максвелл отправил его доктору Вильсону, а тот счел письмо настолько интересным, что позаботился об его публикации: поместил его целиком в свою книгу, посвященную цветовой слепоте. И все же Джеймса безотчетно влекут к себе тайны более глубокие, вещи куда более неочевидные, чем смешение цветов. Именно электричество в силу его интригующей непонятности, неизбежно, рано или поздно, должно было привлечь энергию его молодого ума. Джеймс довольно легко воспринял фундаментальные принципы напряженного электричества. Изучив теорию дальнодействия Ампера, он, несмотря на ее видимую неопровержимость, позволил себе в ней усомниться. Теория дальнодействия казалась несомненно справедливой, т.к. подтверждалась формальным сходством законов, математических выражений для, казалось бы, разных явлений – гравитационного и электрического взаимодействия. Но эта теория более математическая, нежели физическая, не убедила Джеймса, он все больше склонялся к фарадеевскому восприятию действием через посредство магнитных силовых линий, заполняющих пространство, к теории близкодействия.

Пытаясь создать теорию, Максвелл решил использовать для исследования метод физических аналогий. Прежде всего, нужно было найти правильную аналогию. Максвелл всегда восхищался,тогда еще только замеченной, аналогией существующей между вопросами притяжения электрически заряженных тел и вопросами установившейся теплопередачи. Это, а также фарадеевские идеи близкодействия, амперовское магнитное действие замкнутых проводников, Джеймс постепенно выстраивал в новую теорию, неожиданную и смелую.

В Кембридже Джеймса назначают читать труднейшие главы курсов гидростатики и оптики наиболее способным студентам. Кроме того, от электрических теорий его отвлекает работа над книгой по оптике. Максвелл скоро приходит к выводу, что оптика больше не интересует его, как раньше, а лишь отвлекает от изучения электромагнитных явлений.

Продолжая искать аналогию, Джеймс сравнивает силовые линии с течением какой-то несжимаемой жидкости. Теория трубок из гидродинамики позволила заменить силовые линии силовыми трубками, которые легко объясняли опыт Фарадея. В рамки теории Максвелла легко и просто укладывались понятия о сопротивлении, явления электростатики, магнитостатики и электрического тока. Но в эту теорию пока никак не укладывалось открытое Фарадеем явление электромагнитной индукции.

Джеймсу пришлось на некоторое время забросить свою теорию в связи с ухудшением состояния отца, требовавшего ухода. Когда же после смерти отца Джеймс вернулся в Кембридж, он из-за вероисповедания, не смог получить более высокую степень магистра. Поэтому в октябре 1856 года Джеймс Максвелл заступает на кафедру в Абердине.

Абердин 1856-1860

Трактат о кольцах Сатурна

Именно в Абердине была написана первая работа по электричеству – статья «О фарадеевских линиях силы», которая привела к обмену мнениями об электромагнитных явлениях с самим Фарадеем.

Когда Джеймс приступил к занятиям в Абердине, у него в голове уже созрела новая задача, которую пока никто не мог решить, новое явление, которое подлежало объяснению. Это были Сатурновы кольца. Определить их физическую природу, определить за миллионы километров, без каких бы то ни было приборов, пользуясь только бумагой и пером, - это была задача как будто для него. Гипотеза твердого жесткого кольца отпала сразу. Жидкое кольцо распалось бы под влиянием возникших бы в нем гигантских волн – и в результате, по мысли Джеймса Клерка Максвелла, вокруг Сатурна скорее всего витает сонм мелких спутников – «кирпичных обломков», по его восприятию. За трактат, посвященный кольцам Сатурна, в 1857 году Джеймсу была присуждена премия Адамса, а сам он признан одним из самых авторитетных английских физиков-теоретиков.

Рис.2 Сатурн. Фотография, сделанная с помощью 36-дюймового рефрактора в Ликской обсерватории.

Рис.3 Механические модели, иллюстрирующие движение колец Сатурна. Рисунки из эссе Максвелла «О стабильности вращения колец Сатурна»

Лондон – Гленлейр 1860-1871

Первая цветная фотография

В 1860 году начинается новый этап в жизни Максвелла. Он назначен на должность профессора кафедры натуральной философии в Кингс-колледж в Лондоне. Кингс-колледж по оснащенности своих физических лабораторий был впереди многих университетов мира. Здесь Максвелл не просто в 1864-1865 годах читал курс прикладной физики, здесь он пытался организовать учебный процесс по-новому. Студенты учились в процессе экспериментов. В Лондоне Джеймс Клерк Максвелл впервые вкусил плоды своего признания в качестве крупного ученого. За исследования по смешению цветов и оптике Королевское общество наградило Максвелла медалью Румфорда. 17 мая 1861 года Максвеллу была предложена высокая честь – прочесть лекцию перед Королевским институтом. Тема лекции – «О теории трех основных цветов». На этой лекции, в качестве доказательства этой теории, миру впервые была продемонстрирована цветная фотография!

Теория вероятностей

В конце абердинского периода и в начале лондонского, у Максвелла появилось наряду с оптикой и электричеством новое увлечение – теория газов. Работая над этой теорией, Максвелл вводит в физику такие понятия как «вероятно», «это событие может произойти с большей степенью вероятности».

В физике произошла революция, а многие слушатели докладов Максвелла на ежегодных встречах Британской ассоциации этого даже не заметили. С другой стороны Максвелл подошел к границам механического понимания материи. И переступил их. Вывод Максвелла о господстве в мире молекул законов теории вероятностей затрагивал самые фундаментальные основы мировоззрения. Заявление о том, что в мире молекул «господствует случай», было по своей смелости одним из величайших подвигов в науке.

Механическая модель Максвелла

Работа в Кингс-колледже требовала уже куда больше времени, чем в Абердине, - лекционный курс продолжался девять месяцев в году. Тем не менее, в это время тридцатилетний Джеймс Клерк Максвелл набрасывает план своей будущей книги по электричеству. Это зародыш будущего «Трактата». Первые главы его он посвящает своим предшественникам: Эрстеду, Амперу, Фарадею. Пытаясь объяснить Фарадеевскую теорию силовых линий, индукцию электрических токов и Эрстедовскую теорию вихреобразности характера магнитных явлений Максвелл создает свою механическую модель (рис.5).

Модель представляла собой ряды молекулярных вихрей, вращающихся в одном направлении, между которыми помещен слой мельчайших шарообразных частичек, способных к вращению. Несмотря на свою громоздкость, модель объясняла многие электромагнитные явления, в том числе электромагнитную индукцию. Сенсационность модели была в том, что она объясняла теорию о действии магнитного поля под прямым углом по отношению к направлению тока, сформулированную Максвеллом («правило буравчика»).

Рис.4 Максвелл устраняет взаимодействие вращающихся в одну сторону соседних вихрей А и В, вводя между ними «холостые шестеренки»

Рис.5 Механическая модель Максвелла для объяснения электромагнитных явлений.

Электромагнитные волны и электромагнитная теория света

Продолжая опыты с электромагнитами, Максвелл приблизился к теории о том, что любые изменения электрической и магнитной силы посылают волны, распространяющиеся в пространстве.

После серии статей «О физических линиях» у Максвелла был уже, по сути дела, весь материал для построения новой теории электромагнетизма. Теперь уже для теории электромагнитного поля. Начисто исчезли шестеренки, вихри. Уравнения поля были для Максвелла ничуть не менее реальны и ощутимы, чем результаты лабораторных опытов. Теперь и электромагнитная индукция Фарадея, и ток смещения Максвелла выводились не с помощью механических моделей, а с помощью математических операций.

По Фарадею изменение магнитного поля приводит к появлению электрического поля. Всплеск магнитного поля вызывает всплеск электрического поля.

Всплеск электрической волны рождает всплеск волны магнитной, так впервые из-под пера тридцатитрехлетнего пророка появились в 1864 году электромагнитные волны, но еще не в том виде, в котором мы их понимаем сейчас. Максвелл говорил в статье 1864 года только о магнитных волнах. Электромагнитная волна в полном смысле этого слова, включающая одновременно электрическое и магнитное возмущения, появилась у Максвелла позже, в его статье, в 1868 году.

В другой статье Максвелла - «Динамической теории электромагнитного поля» - приобрела чёткие очертания и доказательность намеченная еще раньше электромагнитная теория света. На основе собственных исследований и опыта других ученых (и в наибольшей степени Фарадея) Максвелл делает вывод, что оптические свойства среды связаны с ее электромагнитными свойствами, и свет представляет собой не что иное, как электромагнитные волны.

В 1865 году Максвелл решает оставить Кингс-колледж. Он поселяется в своем родовом поместье Гленмейр, где занимается основными трудами жизни – «Теорией теплоты» и «Трактатом об электричестве и магнетизме». Им посвящается все время. Это были годы отшельничества, годы полной отрешенности от суеты, служения одной только науке, годы наиболее плодотворные, светлые, творческие. Тем не менее, Максвелла вновь тянет работать при университете, и он принимает предложение, сделанное ему Кембриджским университетом.

Кембридж 1871-1879

Кавендишская лаборатория

В 1870 году герцог Девонширский заявил сенату университета о своем желании построить и оснастить физическую лабораторию. И возглавить ее должен был ученый с мировым именем. Этим ученым стал Джеймс Клерк Максвелл. В1871 году он начинает работу по оснащению знаменитой Кавендишской лаборатории. В эти годы наконец издается его «Трактат об электричестве и магнетизме». Более тысячи страниц, где Максвелл дает описание научных опытов, обзор всех, до тех пор созданных теорий электричества и магнетизма, а также «Основные уравнения электромагнитного поля». В целом в Англии не приняли основных идей «Трактата», даже друзья не поняли его. Идеи Максвелла подхватили молодые. Большое впечатление теория Максвелла произвела на русских ученых. Всем известна роль Умова, Столетова, Лебедева в развитии и укреплении Максвелловой теории.

16 июня 1874 года – день торжественного открытия Кавендишской лаборатории. Последующие годы ознаменовались се растущим признанием.

Мировое признание

В 1870 году Максвелл избран почетным доктором литературы Эдинбургского университета, в 1874 году – иностранным почетным членом Американской академии искусств и наук в Бостоне, в 1875 году – членом Американского философского общества в Филадельфии, а также становится почетным членом академий Нью-Йорка, Амстердама, Вены. Последующие пять лет Максвелл занимается редактированием и подготовкой к изданию двадцати пакетов манускриптов Генри Кавендиша.

В 1877 году Максвелл почувствовал первые признаки болезни, а в мае 1879 года прочел своим студентам последнюю лекцию.

Список использованной литературы:

«Жизнь замечательных людей»

Вл. Карцев «Максвелл»

Изд. Москва, «Молодая гвардия», 1974г.

5 ноября 1879 года умер британский физик, математик и механик Джеймс Клерк Максвелл. Ему было 48 лет. За свою жизнь он стал автором множества открытий. Мы вспомнили самые интересные из них.

1. Метод рисования овала. Это открытие Максвелл сделал, еще будучи школьником. Он учился в Эдинбургской академии. Поначалу учеба мало интересовала Джеймса, но позже он стал проявлять к ней интерес. Больше всего мальчик увлекся геометрией. Его понимание красоты геометрических образов возросло после лекции художника Дэвида Рамзая Хея об искусстве этрусков. Размышления над этой темой привели Максвелла к изобретению способа рисования овалов. Метод восходил еще к работам Рене Декарта и состоял в использовании булавок-фокусов, нитей и карандаша, что позволяло строить окружности (один фокус), эллипсы (два фокуса) и более сложные овальные фигуры (большее количество фокусов). Надо сказать, что результаты работы школьника не остались незамеченными и были доложены профессором Джеймсом Форбсом на заседании Эдинбургского королевского общества и затем опубликованы в его «Трудах».

2. Теория цветов. После учебы в Кембридже Максвелл готовился к профессорскому званию. В это время главным научным интересом молодого человека становится работа по теории цветов. Она берет начало в творчестве Исаака Ньютона, который придерживался идеи о семи основных цветах. Максвелл был продолжателем теории Томаса Юнга, выдвинувшего идею трех основных цветов и связавшего их с физиологическими процессами в организме человека. Джеймс использовал уже придуманный ранее «цветовой волчок», диск которого был разделен на окрашенные в разные цвета секторы, а также «цветовой ящик», разработанную им самим оптическую систему, позволявшую смешивать эталонные цвета. Однако ему впервые удалось получить с их помощью количественные результаты и довольно точно предсказывать возникающие в результате смешения цвета. Например, если раньше считалось, что белый цвет можно получить смешением синего, красного и желтого, то Максвелл опроверг это. Его опыты показали, что смешение синего и желтого цветов дает не зеленый, как часто полагали, а розоватый оттенок. Также он выяснил, что основными цветами являются красный, зеленый и синий.


3. Устойчивость колец Сатурна . В Абердине Максвелл женился и занимался преподавательской работой, однако наука все еще отнимала значительную часть его времени. Большее внимание Максвелла в это время привлекало исследование природы колец Сатурна, предложенное в 1855 году Кембриджским университетом на соискание премии Адамса (работу требовалось завершить за два года). Кольца были открыты Галилео Галилеем еще в начале XVII века и долгое время были загадкой природы. Природу вещества, из которого были кольца Сатурна, пытались определить многие ученые. Уильям Гершель считал их сплошными твёрдыми объектами. Пьер Симон Лаплас доказывал, что твёрдые кольца должны быть неоднородными, очень узкими и обязательно должны вращаться. Максвелл провел исследования - математический анализ различных вариантов строения колец - и убедился, что они не могут быть ни твёрдыми, ни жидкими. Выво ученого был таким: подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. При помощи Фурье -анализа Максвелл изучил распространение волн в таком кольце и показал, что при определенных условиях метеориты не сталкиваются между собой. Для случая двух колец он определил, при каких соотношениях их радиусов наступает состояние неустойчивости. Получив за работу премию Адамса и собрав восторженные отзывы коллег, Максвелл продолжил опыты. Его работа получила признание в научных кругах. Королевский астроном Джордж Эйри объявил ее самым блестящим применением математики к физике, которое он когда-либо видел.


4. Первая цветная фотография. Это открытие было сделано в Лондоне . Сначала, в 1860 году, Максвелл выступил с докладом на съезде Британской ассоциации в Оксфорде Максвелл о своих результатах в области теории цветов, подкрепив их экспериментальными демонстрациями с помощью цветового ящика. Год спустя во время лекции в Королевском институте Джеймс представил коллегам первую в мире цветную фотографию, идея которой возникла у него ещё в 1855 году. Она была изготовлена вместе с фотографом Томасом Саттоном. Сперва было получено три негатива цветной ленты на стекле, покрытом фотографической эмульсией (коллодий). Негативы сняли через зелёный, красный и синий фильтры (растворы солей различных металлов). Затем негативы освещали через те же фильтры, после чего удалось получить цветное изображение. Кстати, опыт Максвелла воссоздали спустя почти сто лет назад сотрудники фирмы «Кодак». Принцип ученого использовали еще долгие годы.

Джеймс Максвелл - физик, который первым сформулировал основы классической электродинамики. Их применяют до сих пор. Известно знаменитое уравнение Максвелла, именно он ввел в эту науку такие понятия, как ток смещения, электромагнитное поле, предсказал электромагнитные волны, природу и давление света, сделал множество других важных открытий.

Детство физика

Физик Максвелл родился в XIX веке, в 1831 году. Он появился на свет в шотландском Эдинбурге. Герой нашей статьи происходил из рода Клерков, его отец владел фамильным имением в Южной Шотландии. В 1826 году он нашел себе супругу по имени Фрэнсис Кей, они сыграли свадьбу, а через 5 лет у них родился Джеймс.

В младенчестве Максвелл с родителями переехал в имение Миддлби, здесь он и провел детство, которое было сильно омрачено смертью матери от рака. Еще в первые годы жизни он активно интересовался окружающим миром, увлекался поэзией, его окружали так называемые "научные игрушки". Например, предшественник кинематографа "магический диск".

В 10-летнем возрасте он начал заниматься с домашним учителем, но это оказалось неэффективным, тогда в 1841 году он переехал в Эдинбург к своей тете. Здесь он начал посещать Эдинбургскую академию, в которой упор делался на классическое образование.

Учеба в Эдинбургском университете

В 1847 году будущий физик Джеймс Максвелл начинает учиться в Тут он изучал труды по физике, магнетизму и философии, ставил многочисленные лабораторные опыты. Больше всего его интересовали механические свойства материалов. Он их исследовал с помощью поляризованного света. Такая возможность у физика Максвелла появилась после того, как его коллега Уильям Николь подарил ему два собственноручно собранных поляризационных прибора.

В то время он изготавливал большое количество моделей из желатина, подвергал их деформациям, следил за цветными картинами в поляризованном свете. Сравнивая свои опыты с теоретическими изысканиями, Максвелл вывел много новых закономерностей и проверил старые. В то время результаты этой работы были чрезвычайно важны для строительной механики.

Максвелл в Кембридже

В 1850 году Максвелл желает продолжить образование, хотя отец и не в восторге от этой затеи. Ученый отправляется в Кембридж. Там он поступает в недорогой колледж Питерхаус. Имевшаяся там учебная программа не удовлетворяла Джеймса, к тому же учеба в Питерхаусе не давала никаких перспектив.

Только в конце первого семестра ему удалось убедить отца и перевестись в более престижный Тринити-колледж. Через два года он становится стипендиатом, получает отдельную комнату.

При этом Максвелл практически не занимается научной деятельностью, больше читает и посещает лекции видных ученых своего времени, пишет стихи, участвует в интеллектуальной жизни университета. Герой нашей статьи много общается с новыми людьми, за счет этого компенсирует природную застенчивость.

Интересным был распорядок дня Максвелла. С 7 утра до 5 вечера он трудился, затем засыпал. Снова вставал в 21.30, читал, а с двух до полтретьего ночи занимался бегом прямо в коридорах общежития. После этого снова ложился, чтобы проспать до самого утра.

Работы по электричеству

Во время пребывания в Кембридже физик Максвелл всерьез увлекается проблемами электричества. Он исследует магнитных и электрических эффектов.

К тому времени Майкл Фарадей выдвинул теорию электромагнитной индукции, силовых линий, способных соединять отрицательный и положительный электрические заряды. Однако такая концепция действия на расстоянии не нравилась Максвелла, интуиция ему подсказывала, что где-то есть противоречия. Поэтому он решил построить математическую теорию, которая объединила бы результаты, полученные сторонниками дальнодействия, и представление Фарадея. Он использовал метод аналогии и применил результаты, которых ранее добился Уильямом Томсоном при анализе процессов теплопередачи в твердом теле. Так он впервые дал аргументированное математическое обоснование тому, как идет передача электрического действия в определенной среде.

Цветные снимки

В 1856 году Максвелл отправляется в Абердин, где вскоре женится. В июне 1860 году на съезде Британской ассоциации, который проходит в Оксфорде, герой нашей статьи делает важный доклад о своих исследования в области теории цветов, подкрепляя их конкретными экспериментами с помощью цветового ящика. В том же году его награждают медалью за работу над соединением оптики и цветов.

В 1861 году он предоставляет в Королевском институте неопровержимые доказательства верности своей теории - это цветная фотография, над которой он работал еще с 1855 года. Такого в мире еще никто не делал. Негативы он снял через несколько фильтров - синий, зеленый и красный. Освещая негативы через те же фильтры, ему удается получить цветное изображение.

Уравнение Максвелла

Сильное влияние в биографии Джеймса Клерка Максвелла на него оказали и Томсон. В результате он приходит к заключению, что магнетизм обладает вихревой природой, а электрический ток - поступательной. Он создает механическую модель, чтобы наглядно все продемонстрировать.

В результате ток смещения привел к знаменитому уравнению непрерывности, которое до сих пор используется для электрического заряда. По мнению современников, это открытие стало самым значимым вкладом Максвелла в современную физику.

Последние годы жизни

Последние годы своей жизни Максвелл провел в Кембридже на различных административных должностях, становился президентом философского общества. Вместе с учениками исследовал распространение волн в кристаллах.

Сотрудники, которые с ним работали, неоднократно отмечали, что он был максимально прост в общении, всецело отдавался исследованиям, имел уникальную способность проникать в суть самой проблемы, был очень проницательным, при этом адекватно реагировал на критику, никогда не стремился стать знаменитым, но в то же время был способен на весьма утонченный сарказм.

Первые симптомы серьезного заболевания у него проявились в 1877 году, когда Максвеллу исполнилось всего 46 лет. Он все чаще стал задыхаться, ему трудно было есть и проглатывать пищу, возникали сильные боли.

Уже через два года ему было совсем тяжело читать лекции, выступать на публике, он очень быстро уставал. Врачи отмечали, что его состояние постоянно ухудшалось. Диагноз медиков был неутешителен - рак брюшной полости. В конце года, окончательно ослабев, он вернулся из Гленлэра в Кембридж. Облегчить его страдания пытался доктор Джеймс Паджет, известный в то время.

В ноябре 1879 году Максвелл умер. Гроб с его телом перевезли из Кембриджа в фамильное имение, похоронив рядом с родителями на небольшом деревенском кладбище в Партоне.

Олимпиада в честь Максвелла

Память о Максвелле сохранилась в названиях улиц, зданий, астрономических объектов, наград и благотворительных фондов. Также ежегодно в Москве проходит олимпиада по физике имени Максвелла.

Она проходит для учеников с 7 по 11 классы включительно. Для школьников 7-8 классов результаты олимпиады Максвелла по физике являются заменой регионального и Всероссийского этапа олимпиады школьников по физике.

Чтобы участвовать в региональном этапе, нужно получить достаточное количество баллов на предварительном отборе. Региональный и финальный этапы олимпиады Максвелла по физике проходят в два этапа. Один из них теоретический, а второй - экспериментальный.

Интересно, что задания олимпиады Максвелла по физике на всех этапах совпадают по уровню сложности с испытаниями финальных этапов Всероссийской олимпиады школьников.

Многие научные издания и журналы в последнее время публикуют статьи о достижениях в физике и современных ученных и редко встречаются публикации о физиках прошлого. Нам бы хотелось исправить это положение и вспомнить об одном из выдающихся физиков прошлого века Джеймсе Клерке Максвелле. Это известный английский физик, отец классической электродинамики, статистической физики и многих других теорий, физических формул и изобретений. Максвелл стал создателем и первым руководителем Кавендишской лаборатории.

Как известно, Максвелл выходцем из Эдинбурга и родился в 1831 году в дворянской семье, которая имела родственную связь с шотландской фамилией Клерков Пеникуик. Детство Максвелла прошло в поместье Гленлэр. Предки Джеймса были политическими деятелями, поэтами, музыкантами и учеными. Наверное, склонность к наукам ему передалась по наследству.

Джеймс воспитывался без матери (так как она умерла, когда ему было 8 лет) отцом, который заботливо относился к мальчику. Отец хотел, чтобы его сын изучал естественные науки. Джеймс сразу полюбил технику и быстро развивал практические навыки. Первые уроки на дому маленький Максвелл воспринял с упорством, так как ему не были по душе жесткие методы воспитания, применяемые учителем. Дальнейшее обучение проходило в аристократической школе, где у мальчика проявились большие математические способности. Особенно Максвеллу нравилась геометрия.

Многим великим людям геометрия казалась потрясающей наукой, и даже в 12 лет говорил об учебнике геометрии, как о святой книге. Максвелл любил геометрию не хуже других научных светил, но у него плохо складывались отношения со школьными товарищами. Они постоянно придумывали ему обидные прозвища и одной из причин была его нелепая одежда. Отец Максвелла считался чудаком и покупал сыну одежду, которая вызывала улыбку.

Максвелл уже в детстве подавал большие надежды в области науки. В 1814 году его отдали учиться Эдинбургскую гимназию, а в 1846 году ему вручили медаль за заслуги в области математики. Его отец гордился своим сыном и ему предоставилась возможность представлять одну из научных работ сына перед коллегией Эдинбургской Академии наук. Эта работа касалось математических расчетов эллиптических фигур. Тогда эта работа имела название «О черчении овалов и об овалах со многими фокусами». Она была написана в 1846 году, а опубликована для широких масс в 1851.

Усиленно изучать физику Максвелл начал после перевода в Эдинбургский университет. Его учителями стали Калланд, Форбс и другие. Они сразу увидели в Джеймсе высокий интеллектуальный потенциал и неудержимое стремление изучать физику. До этого периода Максвелл сталкивался с отдельными разделами физики и изучал оптику (посвятил много времени поляризации света и кольцам Ньютона). В этом ему помогал известный физик Вильям Николь, который в свое время изобрел призму.

Конечно, Максвеллу не были чужды другие естественные науки, и он особое внимание уделял изучению философии, истории науки и эстетики.

В 1850 году он поступает в Кембридж, в котором когда-то работал Ньютон и в 1854 году получает академическую степень. После этого его исследования коснулись области электричества и электроустановок. А в 1855 году ему предоставили членство в совете Тринити-колледжа.

Первая значительная научная работа Максвелла – это «О фарадеевых силовых линиях», которая появилась в 1855 году. В свое время Больцман сказал о статье Максвелла, что данная работа имеет глубокий смысл и показывает насколько целеустремленно подходит к научной работе молодой ученый. Больцман считал, что Максвелл не только разбирался в вопросах естествознания, но и внес особый вклад в теоретическую физику. Максвелл обозначил в своей статье все тенденции эволюции физики на несколько последующих десятилетий. Позже к такому же выводу пришел Кирхгоф, Маха и .

Как образовалась Кавендишская лаборатория?

После завершения учебы в Кембридже Джеймс Максвелл остается здесь, как преподаватель и в 1860 году он становится членом Лондонского королевского общества. В это же время он переезжает в Лондон, где ему предоставляют место руководителя кафедры физики в Кинг-колледже Лондонского университета. На этой должности он проработал 5 лет.

В 1871 году Максвелл возвращается в Кембридж и создает первую в Англии лабораторию для исследований в области физики, которая получила название Кавендишская лаборатория (в честь Генри Кавендиша). Развитию лаборатории, которая стала настоящим центром научных исследований, Максвелл посвятил остаток своей жизни.

О жизни Максвелла известно мало, так как он не вел записей и дневников. Это был скромный и застенчивый человек. Умер Максвелл в возрасте 48 лет от онкологического заболевания.

Какое научное наследие Джеймса Максвелла?

Научная деятельность Максвелла охватывала многие направления в физике: теория электромагнитных явлений, кинематическая теория газов, оптика, теория упругости и другие. Первое, что заинтересовало Джеймса Максвелла – это изучение и проведение исследований в физиологии и физике цветного зрения.

Максвеллу впервые удалось получить цветное изображение, которое получилось благодаря одновременной проекции красного, зеленного и синего диапазона. Этим Максвелл очередной раз доказал миру, что цветной образ зрения основан на трехкомпонентной теории. Данное открытие положило начало создания цветных фотографий. В период с 1857-1859 года Максвеллу удалось исследовать устойчивость колец Сатурна. Его теория говорит о том, что кольца Сатурна будут устойчивы только при одном условии – несвязанности между собой частиц или тел.

С 1855 года Максвелл уделял особое внимание работе в области электродинамики. Существует несколько научных работ этого периода «О фарадеевых силовых линиях», « О физических силовых линиях», «Трактат об электричестве и магнетизме» и «Динамическая теория электромагнитного поля».

Максвелл и теория электромагнитного поля.

Когда Максвелл стал изучать электрические и магнитные явления, то многие из них уже были хорошо исследованы. Был создан закон Кулона , закон Ампера , также было доказано, что магнитные взаимодействия связаны действием электрических зарядов. Многие ученые того времени были сторонниками теории дальнодействия, которая утверждает, что взаимодействие происходит мгновенно и в пустом пространстве.

Главную роль в теории близкодействия сыграли исследования Майкла Фарадея (30-е годы XIX века). Фарадей утверждал, что природа электрического заряда основана на окружающем пространстве электрического поля. Поле одного заряда связано с соседним в двух направлениях. Токи взаимодействуют при помощи магнитного поля. Магнитные и электрические поля по Фарадею описаны им в виде силовых линий, которые являются упругими линиями в гипотетической среде – в эфире.

Максвелл поддерживал теорию Фарадея о существовании электромагнитных полей, то есть был сторонником возникающих процессов вокруг заряда и тока.

Максвелл объяснил идеи Фарадея в математическом виде, в чем очень нуждалась физика. При введении понятия поля законы Кулона и Ампера стали более убедительными и глубоко осмысленными. В понятии электромагнитной индукции Максвелл сумел рассмотреть свойства самого поля. Под действием переменного магнитного поля в пустом пространстве зарождается электрическое поле с замкнутыми силовыми линиями. Такое явление называется вихревым электрическим полем.

Следующим открытием Максвелла было то, что переменное электрическое поле может порождать магнитное поле, на подобии обычного электрического тока. Эту теорию назвали – гипотезой о токе смещения. В дальнейшем поведение электромагнитных полей Максвелл выразил в своих уравнениях.


Справка. Уравнения Максвелла – это уравнения описывающие электромагнитные явления в различных средах и вакуумном пространстве, а также относятся к классической макроскопической электродинамике. Это логический вывод, сделанный с опытов, основанных на законах электрических и магнитных явлений.
Основным выводом уравнений Максвелла является конечность распространения электрических и магнитных взаимодействий, что разграничивало теорию близкодействия и теорию дальнодействия. Скоростные характеристики приблизились к скорости света 300000 км/с. Это дало повод Максвеллу утверждать, что свет это явление, связанное с действием электромагнитных волн.

Молекулярно-кинетическая теория газов Максвелла.

Максвелл внес свою лепту в изучение молекулярно-кинетической теории (сейчас данная наука называется статистическая механика ). Максвеллу первому пришла в голову идея о статистическом характере законов природы. Он создал закон распределения молекул по скоростям, а так же ему удалось рассчитать вязкость газов в отношении скоростных показателей и длины свободного пробега молекул газа. Также благодаря работам Максвелла мы имеем ряд соотношений термодинамики.

Справка. Распределение Максвелла – это теория распределения по скоростям молекул системы в условиях термодинамического равновесия. Термодинамическое равновесие – это условие поступательного движения молекул описанное законами классической динамики.

У Максвелла было множество научных трудов, которые были опубликованы: «Теория теплоты», «Материя и движение», « Электричество в элементарном изложении» и другие. Максвелл не только двигал науку в период, но и интересовался ее историей. В свое время ему удалось опубликовать труды Г. Кавендиша, которые он дополнил своими комментариями.

Чем запомнился миру Джеймс Клерк Максвелл?

Максвелл вел активную работу по изучению электромагнитных полей. Его теория об их существовании получила всемирное признание только спустя десятилетие после его смерти.

Максвелл первый классифицировал материи и присвоил каждой свои законы, которые не сводились к законам механики Ньютона.

О максвелле писали многие ученные. Физик Р. Фейнман сказал о нем, что Максвелл, открывший законы электродинамики, смотрел через века в будущее.

Эпилог. Джеймс Клерк Максвелл умер 5 ноября 1879 года в Кембридже. Его похоронили в небольшой шотландской деревушке возле его любимой церкви, которая находится не далеко возле его родового поместья.

Понравилась статья? Поделитесь ей