Контакты

Как образуется электричество для детей. Электрический ток, откуда он берется и как добирается до наших домов? Что делать, чтобы избежать этих сокращений

Познавательное путешествие-знакомство «Электричество и электроприборы»

Кривякова Елена Юрьевна, воспитатель логопедической группы, МБДОУ центр развития ребенка – детский сад №315 г. Челябинска

Описание:

Вашему вниманию предлагается сценарий познавательного путешествия. Раздел «Ребёнок и окружающий мир ». Сценарий познавательного путешествия направлен на расширение и обобщение знаний об электричестве и электрических приборах, воспитание безопасного поведения по отношению к электричеству и электроприборам, интереса к окружающим в быту предметам, использование полученных знаний в игровой деятельности . Подготовленный материал будет полезным для педагогов дополнительного образования , воспитателей логопедических и общеобразовательных групп.
Интеграция образовательных областей : «Познание», «Коммуникация», «Безопасность», «Социализация».
Виды детской деятельности: игровая, познавательная, коммуникативная, экспериментальная.
Цель: Развитие интереса к явлениям и предметам в окружающем мире. Расширение знаний безопасного поведения.
Задачи
Образовательные:
1. Расширить знания об электричестве и электроприборах.
2. Обобщить знания детей о пользе и опасности электричества.
3. Пополнить словарь детей новыми понятиями «гидроэлектростанция», «аккумулятор», «электрический ток».
Коррекционно-развивающие:
4. Активизировать речь и мыслительную деятельность детей. Способствовать умению четко и грамотно формулировать свою мысль.
5. Автоматизировать звукопроизношение у детей при звукоподражании.
6. Развивать зрительное и слуховое внимание, словесно-логическое мышление, память, творческое воображение.
7. Развивать социальные и коммуникативные навыки детей в совместной деятельности.
Воспитательные:
8. Воспитывать доброжелательное отношение к сверстникам через умения слушать товарища и принимать мнение другого.
9. Воспитывать элементарные навыки безопасного поведения в быту при обращении с электричеством.
Ожидаемый результат: повышение интереса к окружающим предметам в быту и использовании полученных знаний в повседной жизни.
Предварительная работа: беседа «Путешествие в прошлое электрической лампочки»; заучивание загадок и стихов об электроприборах; рассматривание иллюстраций с изображением электроприборов; подбор предметов, работающих от батареек, аккумуляторов, элементов питания, для выставки; рассказы детей из личного опыта.
Оборудование:
- разрезная картинка с изображением электрической лампочки;
- карточки из дидактической игры «Эволюция транспорта и окружающих нас вещей» на примере группы «осветительных приборов»;
- свеча;
- мультимедийная система;
- игрушка набор для проведения опытов по разным отраслям знаний «Электрическая сирена» из серии научных игрушек «Изучаем окружающий мир»;
- выставка предметов, работающих от батареек, аккумуляторов, элементов питания;
- мольберт;
- мягкие модули;
- модели с изображением правил безопасности при работе с электроприборами;
- эмблемы с изображением лампочки по количеству детей.
Методы обучения и воспитания: художественное слово (стихи и загадки), демонстрационный материал, использование элементов технологии ТРИЗ (приемы: «хорошо - плохо», моделирование), экспериментирование.
Условия проведения: просторный зал, в котором можно свободно передвигаться; стульчики по количеству детей; стол, на котором расположена выставка; мольберт с перевернутыми моделями безопасного обращения с электроприборами.

Тяжесть аварии зависит от. Напряженность: чем выше она, тем выше риск. Влажность и изоляция тела, способность к сопротивлению организма ослабляется, если кожа в контакте с течением влажная, если почва мокрая, а жертва босиком. Например: контакт с 220 В с сухими или перчатками, ногами на сухом грунте, вызывает только покалывание. Если руки и ноги голые и влажные, существует риск остановки сердца.

В последние дни , без намерения, мы все установили рекорд во Франции. Это самое большое количество электроэнергии! Это явление имеет название: оно называется пиковым потреблением энергии. На этой неделе он достиг невероятного количества. Это также восхитило многих людей, которые боялись перебоев в подаче электроэнергии.

Ход мероприятия:

Вступительное слово воспитателя (стимулирование к предстоящей деятельности) :
Дорогие ребята! Я рада вас всех видеть здоровыми и веселыми. Сегодня нас ждет необычное путешествие , в котором мы узнаем много интересного. А для начала …
Проблемная ситуация: обратите внимание, что лежит на столе? Похоже, это разрезанные части картинки. Возьмите каждый по одной части, попробуйте вместе собрать общую картинку (дети собирают) .
Что получилось? (электрическая лампочка) .

Воспитатель: Скажите, а всегда ли люди использовали для освещения лампочки? (ответы детей) .
Погружение в проблему: Предлагаю вам окунуться в прошлое и проследить, как люди освещали свои жилища в разное время.
Дидактическая игра «Эволюция окружающих нас вещей»

Какова максимальная потребляемая мощность?

Потому что на этой неделе, во вторник и среду, Франция дважды била, рекорд по наибольшему количеству потребляемой электроэнергии. Чтобы понять, что соответствует этому пику, мы должны помнить, что все наши электрические устройства нуждаются в мощности для работы. Это количество электроэнергии измеряется в ваттах, например, телевизор потребляет 200 Вт каждый раз, когда вы включаете его. Если вы считаете все, что используется всеми электроприборами в то время суток, вы получаете число: потребление электроэнергии во Франции.


Задание: Перед вами лежат картинки с изображением разных осветительных приборов. Выберите картинку, которая привлекла ваше внимание, понравилась вам. А теперь с их помощью мы будем строить дорожку из прошлого в настоящее. (Разложить карточки в хронологической последовательности, в соответствие с ранее проведенной беседой: «Путешествие в прошлое электрической лампочки») .
Воспитатель: Мы построили мостик из прошлого в настоящее. Я сейчас возьму свечу, зажгу её, а вы следуйте за мной (ребёнок, идущий последним, собирает картинки) . Переходим по « мостику» от прошлого к «настоящему».
Воспитатель: Вот мы с вами и оказались в настоящем (воспитатель предлагает детям присесть на стульчики напротив экрана) .
Загадка-стихотворение:
Вижу розетку вверху на стене,
И интересно становится мне,

(Электричество)
Воспитатель: А вы хотите узнать, как к нам в дом приходит электричество?
Показ слайда


Почему мы сейчас ломаем записи?

В этот момент эта цифра превосходит все записи. Потому что в течение недели холодно по всей Франции. Поэтому, чтобы согреть наши дома, мы полностью подталкиваем радиаторы.

В какое время происходит этот пик

В то же время: в 19 Нормальный, вот когда большинство людей идет домой.

Оправдает ли пик риск?

Да, это сбой питания! На самом деле, это просто: во Франции электричество в основном производится атомными электростанциями, тепловыми электростанциями и плотинами. Все эти объекты производят ватты в ограниченном количестве. Если мы превысим доступное количество, мы рискуем вызвать огромные сокращения мощности.


Воспитатель комментирует: Это – гидроэлектростанция. Под большим напором вода поступает в турбину, где с помощью генератора вырабатывается электричество. Оно подаётся в специальные подстанции, а от них потом по проводам бежит к нам домой, в больницы, на заводы и туда, где люди не могут обойтись без электричества.
Воспитатель: Скажите, а для чего люди ещё используют электричество, кроме освещения помещения? (предполагаемый ответ детей: для пользования электроприборами).
Игра «Загадки-разгадки»
Дети по очереди загадывают загадки. После ответов детей, правильный ответ появляется на экране мультимедиа.
1 -й ребенок:
Пыль увижу – заворчу,
Заверчу и проглочу! (Пылесос)
Воспитатель: Какие звуки мы можем услышать при работе пылесоса? (ДЖ)
2 –й ребенок:
В неё сначала бельё загружай,
Насыпь порошок и в розетку включай,
Программу для стирки задать не забудь,
А после ты можешь пойти отдохнуть. (Стиральная машина)
Воспитатель: Какие звуки мы слышим при работе стиральной машины? (Р), (У) .
3-й ребенок:
Помялось платье? Ничего!
Разглажу я сейчас его,
Работать мне, не привыкать…
Готово! Можно надевать. (Утюг)
Воспитатель: Какие звуки мы можем услышать во время работы утюга? (ПШ) .
4-й ребенок:
Живут там разные продукты,
Котлеты, овощи и фрукты.
Сметана, сливки и колбасы,
Сосиски, молоко и мясо. (Холодильник)
Воспитатель: Молодцы, мы с вами не только все загадки разгадали, но и вспомнили все звуки, которые мы слышим при работе этих электроприборов.
Интересно, а какие звуки мы слышим, когда работает холодильник? (ответ ДЗ) .
Ребята, вспомните, какие электроприборы мы с вами еще не назвали, назовите их. (Ответы детей сопровождаются показом слайдов) . Все вспомнинили?!
Физкультминутка (активизация внимания и двигательной активности, восстановление работоспособности) .
Воспитатель: Где обычно в квартире стоит холодильник? (на кухне)
И мы с вами представим, что мы на кухне (дети выполняют движения в соответствии с текстом).
Что за шум на кухне этой?
Будем жарить мы котлеты.
Мясорубку мы возьмём,
Быстро мясо провернём.
Миксером взбиваем дружно
Всё, что нам для крема нужно.
Чтобы торт скорей испечь,
Включим мы электропечь.
Электроприборы – это чудо!
Жить без них нам было б худо.
Воспитатель: А вы знаете, ребята, что люди научились приручать электричество, и даже прятать его в специальных «домиках»: аккумуляторах и батарейках – их называют «элементы питания» (Показ картинок на слайде).
Эксперимент (специально приготовленный стол) . Мы сейчас с вами проведем эксперимент и проверим: правда ли электрическая система может работать от обычных батареек. И убедиться в том, что в них действительно «живёт» электричество (Опыт с набором «электрическая сирена») .



Воспитатель: Ребята, а кто знает, где ещё люди используют эти «домики» для хранения электричества: батарейки, аккумуляторы? (Ответы: видеокамера, фонарики, пульт управления, фотоаппарат). Педагог обращает внимание детей на выставку, рассматривают экспонаты.
Воспитатель: Ребята, подумайте и скажите, какую пользу человеку несёт электричество? (ответы детей) .
- А есть ли вред? (ответы детей) .
Правила безопасного обращения при работе с электроприборами
Дети присаживаются на мягкие модули напротив мольберта.
Задание: Используя модели, нам надо сформулировать основные правила безопасности при работе с электроприборами. По показу моделей формулируем правила.


Во Франции вы должны знать, что есть три места, более уязвимые, чем другие, с точки зрения риска поломки: Бретань, Альпы Приморская и Вар, потому что в этих углах высоковольтные линии электропередач не производят электричество. все еще достаточно электроэнергии по сравнению с потребностями на месте. Итак, если вы живете в этих районах, остерегайтесь сокращений!

Что делать, чтобы избежать этих сокращений?

Поскольку никто из нас не может вмешиваться в погоду, есть и другие трюки: например, добавить большой свитер или обернуть под одеяло больше. Это слово имеет несколько возможных значений: это своего рода кирка или гора с остроконечным верхом. Но он также может использоваться в определенных выражениях, таких как «вы правы», что означает, что вы придете в нужное время, чтобы решить недоразумение или проблему. Наконец, «пик» используется, чтобы говорить о том, когда явление достигает максимума.


Правило 1. Не засовывайте в электрическую розетку посторонние предметы, особенно металлические!
Почему? Потому что ток, как по мостику переберётся по предмету на вас и может сильно повредить здоровью.



Правило 2. Не касайтесь руками оголённых проводов!
Почему? По оголённому, не защищённому обмоткой проводу, течёт электрический ток, удар которого может быть смертелен.



Правило 3. Не прикасайся к включенным приборам голыми руками!
Почему? Можно получить удар током, так как вода является проводником электрического тока.


Например, на данный момент мы говорим, что мы достигли пика потребления электроэнергии, потому что мы никогда не потребляли столько электроэнергии во Франции. Да, потеряйте отрицательные сборы, так что осталось больше положительных зарядов! Атом заряжается положительно.

Есть ли статическое электричество в природе?

И наоборот, когда атом побеждает на выборах, он становится отрицательно заряженным. Если вы когда-либо видели грозу и видели молнию, то вы стали свидетелями самых больших искр, создаваемых статическим электричеством в воздухе. Для молнии это стимулирует производство статического электричества.


Правило 4. Не оставляйте включенные электроприборы без присмотра!
Почему? Потому, что включенные электроприборы могут стать причиной пожара. Уходя из дома, всегда проверяйте: потушен ли свет, выключены ли телевизор, магнитофон, электрообогреватель, утюг и другие электроприборы.
Воспитатель читает стихотворение:
ЭЛЕКТРИЧЕСКИЙ ТОК
Вижу розетку внизу на стене
И интересно становится мне,
Что за таинственный зверь там сидит,
Нашим приборам работать велит?
Зверя зовут электрический ток.
Очень опасно играть с ним, дружок!
Руки подальше от тока держи.
Пальцы в розетку совать не спеши!
Если попробуешь с током шутить,
Он разозлится и может убить.
Ток – для электроприборов, пойми,
Лучше его никогда не дразни!
Подведение итогов познавательного путешествия.
Вот и закончилось наше путешествие-знакомство с электричеством и электроприборами. Что понравилось и запомнилось вам особенно в нашем путешествии? (ответы детей) . Желаю вам помнить о важности электроприборов в нашей жизни и не забывать о коварстве электричества. Помните правила безопасности по использованию электроприборов. А напоминать о нашем путешествии будет вот такая весёлая электрическая лампочка - эмблема.


Воспитатель раздает детям эмблему с изображением электрической лампочки.

Вся материя состоит из крошечных частиц, которые называются атомами. Внутри атома имеются еще более мелкие частицы: электроны, вращающиеся вокруг центра, или ядра. Ядро состоит из протонов и нейтронов. Электрон имеет отрицательный заряд, а протон положительный. Обычно у атома столько же электронов, сколько и протонов, поэтому атом является нейтральным, т. е. не имеет заряда. Но иногда электроны слетают со своих орбит – их притягивают другие атомы, которые имеют положительный заряд, потому что в них не хватает электрона.

Движение электронов от одного атома к другому порождает энергию, которая называется электричеством. Электричество, которым мы пользуемся, вырабатывают гигантские машины – генераторы, и происходит это в местах, которые называются электростанциями. Для того чтобы генераторы работали, необходим источник энергии. Чтобы производить пар, который будет вращать огромные лопасти турбины, приводящие в действие генератор, воду для получения пара нагревают с помощью тепла, получаемого либо при сжигании угля, нефти или природного газа, либо при делении ядерного топлива.

Легкое статическое электричество

Наступает время, когда дисбаланс сборов и так важно, что он должен стабилизироваться! Это обновление нагрузки вызывает молнию.

Для этого легко сделать домашний опыт, нам понадобятся

Воздушный шар Шерстяной свитерА потолок. . Поместите мяч под потолок. Мои объяснения этого легко сделать на дому. Почему воздушный шар не прилипает к потолку? В начале этого простого эксперимента вы можете проверить, находится ли ваш левый шар в потолке.

Это позволит нам проверить его электрический заряд. Как вы можете видеть, ничего особенного не происходит. Воздушный шар просто падает на землю. Здесь мяч и потолок имеют сбалансированные нагрузки, ничто не удерживает мяч на потолке, и ничто не отталкивает его назад.

Энергия, полученная на основе тепла, называется тепловой энергией (мощностью). Работу эту может также выполнять вода, падающая с громадных, построенных человеком плотин или водопадов (гидроэнергетика). Для питания генераторов, вырабатывающих электричество, может также использоваться сила ветра или тепло Солнца, хотя к этим источникам энергии прибегают нечасто.

Это совершенно сбалансированный результат атомных зарядов. В наших двух элементах есть много электронов, воздушный шар и потолок! Зачем счистить мяч? Потирая воздушный шар, ему дают электрический заряд. Мы нарушаем баланс электрических зарядов, которые существовали. Чем больше мы втираем мяч, тем больше мы разрываем электроны.

Потеряв свои электроны, на воздушном шаре доминируют положительно заряженные протоны. Поэтому он положительно заряжен и обнаруживает дисбаланс с потолком, поскольку мы сможем наблюдать его во время этого легкого эксперимента. Почему воздушный шар прилипает к потолку? Воздушный шар остается прикрепленным к потолку, потому что потолок имеет нейтральный заряд по отношению к баллону, который при заданной нагрузке трением.

С помощью гигантского магнита генератор создает поток электрических зарядов, или электрический ток, который течет по медным проводам. Но для того чтобы электричество передавалось на большие расстояния – к жилым домам и промышленным предприятиям, – необходимо повысить напряжение, то есть силу, которая толкает ток. Для этого электричество проходит через устройство, которое называется трансформатор. Готовое к путешествию, но теперь слишком мощное и опасное для использования электричество выходит из электростанции по огромным кабелям, которые должны быть надежно укрыты под землей или протянуты высоко в воздухе с помощью опорных вышек.

Как магниты, потолок и воздушный шар привлекают! Происходит доминирующий заряд воздушного шара и противоположный потоку электрического притяжения. Через несколько минут вы увидите несколько часов, если вы хорошо протерте свой шар, а заряды начнут балансировать.

Объяснение этого простого научного эксперимента со сладостями

Существует обмен электронов между баллоном и потолком, который естественно сбалансирован. Когда оба элемента восстанавливают свой электрический баланс, мяч падает. На листе бумаги нарисуйте два больших круга вокруг круга, а посреди каждого из этих кругов рисует четко определенную точку.

Когда электричество доходит до места назначения, оно пропускается через другой трансформатор, понижающий его напряжение таким образом, что оно становится пригодным для нормального использования. После этого электричество поступает в жилые дома и на промышленные предприятия по проводам. Провода подсоединены к счетчикам, которые регистрируют, сколько электричества потребляется в каждом доме, чтобы потребители могли оплатить стоимость потребленного электричества компании-производителю.

Поместите конфету в каждую из этих точек. Эти конфеты в центре кругов являются ядрами. Придерживаясь этой конфеты, вы можете разместить 4 конфеты другой формы! Это будут наши протоны, которые естественно положительно заряжены! Поэтому мы скажем, что это правда, и все в порядке!

Мы только что создали центр нашего атома. Теперь давайте добавим конфету в круг, который вы нарисовали ранее. Эти конфеты будут электронами, которые естественно отрицательно заряжены. Вы можете добавить 4! Вот и все, наш атом завершен, мы сможем наблюдать вживую, что происходит во время трения!

Провода, проложенные через стены и полы, подводят электричество в каждую комнату дома или квартиры. Эти провода подключены через особые устройства, которые называются плавкие предохранители или прерыватели цепи. Плавкие предохранители прерывают прохождение электрического тока (т. е. размыкают цепь), если по какой-то причине ток увеличится до опасного уровня (что может вызвать перегревание и пожар). Бытовые приборы, которые работают от электричества – освещение, телевизор, тостер и другие, можно подключить к току, нажав выключатель или вставив вилку прибора в розетку.

Когда вы втираете свой шар на свой свитер, он побеждает или потерял электроны, что повлияло на изменение заряда атомов! Если вы удалите одну из электронных конфет, присутствующих на круге, атом получает положительный заряд, потому что положительно заряженные протоны находятся в большем количестве.

Большинство из них больше! Если вы добавите электронный конвек на круг, то они будут в большем количестве, и у атома будет отрицательный заряд! Так много для этого эксперимента по статическому электричеству объяснили детям! Не стесняйтесь делиться в социальных сетях!

Электричество окружает детей повсюду: дома, на улице, в детсаду, в игрушках и бытовых приборах - сложно вспомнить сферу жизнедеятельности человека, где обходились бы без тока. А потому интерес детей к данной теме вполне объясним. Хотя рассказ о свойствах электричества - не только вопрос любознательности, но и… безопасности малыша!

В 2-3 года у маленького человечка начинается период, когда ему интересно все. Что это, зачем, как работает, почему оно такое, а не иное, как этим пользуются, чем полезно или вредно - миллион вопросов в сутки папе и маме гарантирован. Причем сфера интересов «почемучки» обширна: его волнуют как приземленные темы (вроде того, или ), так и возвышенные ( , ). И расспросы об электричестве также естественны. Что такое ток, откуда берется и куда пропадает, когда щелкаем выключателем? Почему от электричества светится лампочка, и работает телевизор? Как папин или его работают без провода к розетке? Чем так опасен ток, что родители запрещают даже приближаться к этой розетке? Вариантов не счесть! Конечно, можно отмахнуться от них, сказав, что ребенок еще мал, чтобы понять эту тему (с точки зрения науки, электричество столь сложное понятие, о котором можно рассуждать не раньше 12-14 лет). Но такой подход ошибочен. Причем с точки зрения и воспитания, и безопасности. Пусть малыш не разберется в физике процесса, но знать суть электротока и относиться к нему с должным уважением ему вполне под силу.

Электричество: пчелы или электроны?

Итак, начнем с базового вопроса: что такое электричество? В общении с ребенком 2-3 лет возможно несколько подходов. Первый: игровой. Можно рассказать малышу, что внутри проводов живут, например, маленькие пчелы или муравьи, фактически невидимые человеческому глазу. И когда электроприбор выключен, они там покоятся, отдыхают. Но стоит подключить его к розетке (либо нажать на выключатель, если он соединен с сетью), как они начинают трудиться: бегать либо летать внутри провода вперед и назад без устали! И от такого их движения вырабатывается энергия, зажигающая лампочку или позволяющая работать тем или иным приборам. Причем количество таких пчелок-муравьишек в проводе может быть разным. Чем их больше и чем активнее они двигаются, тем выше сила тока - а значит, тем больший механизм они могут запустить. Проще говоря, чтобы светилась лампочка в карманном фонарике, нужно совсем мало таких «помощников», а чтобы осветить дом - нужно иметь запас электричества намного, намного больше. И тут важно подчеркнуть: такие пчелы хоть и работают на пользу людей, но могут серьезно обидеться, если к ним относиться небрежно. Причем обидой дело не ограничится - они могут и больно-больно укусить (и чем больше пчелок, тем сильнее будет укус). А потому нельзя лезть в розетку или разбирать электроприбор, а также касаться оголенных проводов у подключенных приборов - пчелам может не понравиться, что кто-то пытается мешать им работать…

Если же вам такой подход не по душе, вы предпочитаете отвечать ребенку на его вопросы с полной серьезностью, тогда можно рассказать о физическом явлении электричества, только адаптировав его для маленького человечка. Поясните, что внутри металлических проводов есть микрочастицы - электроны. Они, с одной стороны, настолько мелкие, что их даже в микроскоп невозможно рассмотреть, а с другой - их очень много. В обычном состоянии они находятся на одном месте и ничего не делают. Но когда включаете прибор, электроны начинают с большой скоростью передвигаться внутри проводов. Это движение и рождает энергию электричества. Чтобы малышу было понятно, как такое возможно, можно сравнить это с водой в трубах - не зря же говорят, что ток по проводам течет. Словно капли жидкости в трубочке, подталкивающие друг друга, следующие одна за другой, бегущие, пока не перекрыт вентиль, электроны действуют точно так - только у них вместо вентиля выключатель. А еще от прямого контакта с электронами, в отличие от воды, вы не намокаете, а получаете электрический удар. Это самый настоящий удар: ведь электронов очень много и они бегут с огромной скоростью. А потому, если встать у них на пути, они бьются в кожу с большой силой, что, конечно, очень больно. Поэтому, если прибор включен в розетку или оголился провод (что по сути равноценно разрыву трубы, когда вода вытекает наружу: и чем больше воды, тем сильнее ее напор), нельзя мешать ему. Пусть электроны тратят энергию на лампочку, а не на то, чтобы потратить ее, обидев малыша!

Демонстрируйте электроток на примерах

Какой бы подход в рассказе об электричестве вы ни выбрали, логичным для детей выступает следующий вопрос: а почему при включении прибора пчелы или электроны начинают в проводе двигаться, что их заставляет делать это? В таком случае надо в общих чертах рассказать о строении электросети, и желательно делать это с приведением наглядных примеров из окружающей жизни либо на фото- и видеоматериалах. Расскажите, что все-все провода в доме сходятся в один кабель, вмещающий нужное для жилья количество электронов/пчел. Далее он выходит на улицу и, опираясь на столбы, ведет к фабрике, где и производят эти частицы, - такой завод называют электростанцией. О том, как их производят (сжиганием угля, от привода на гидроэлектростанции или ветряках, от солнечных батарей), можно рассказать по желанию, если ребенок проявляет к этому интерес. Но обычно в 2-3 года хватает понятия, что есть такая фабрика, где делают «электрических пчел» или электроны. Хотя никто не запрещает провести вам с ребенком маленький, но наглядный эксперимент. Вам понадобится простейшая динамо-машина: с лампочкой и ручкой, от вращения которой светится лампочка. Малыш наверняка придет в восторг, видя, что может производить собственными руками электричество! Причем стоит ему перестать вращать рукоятку, и лампочка сразу гаснет - очень наглядно и просто.

Экспериментальная практика вообще крайне полезна - особенно в тех вопросах, где надо показать, что ток опасен. Для этого вам понадобится несколько батареек и пара лампочек. Вначале поясните, что батарейка - это такой маленький запас электричества: как консервы с едой, в которых припасено электронов для питания приборов на какое-то время. А потом покажите, как она работает: установили ее в игрушку и телефон, они работают. Закончился заряд пчелок/электронов - прибор выключился: и нужны или новые батарейки, или зарядить старые, «залив» из розетки партию «помощников» (подчеркните, что заряжать можно не все, а только батареи, называемые аккумуляторами). Теперь переходите к экспериментам. Возьмите батарейку на 9 В (ту, что принято именовать кроной) и предложите малышу прикоснуться одновременно к обоим контактам языком. Легкое жжение, которое почувствует, и есть проявление электрического удара - только слабым, ведь в батарейке пчелок или электронов очень мало. А в розетке их на порядок больше, а удар в десятки раз сильнее и больнее. Конечно, немалое количество детей захочет убедиться в этом. Потому нужен иной эксперимент: с парой разных лампочек - на 4,5 В и 9 В. Подключите ко все той же батарейке последнюю - она светится. А затем присоедините ту, что рассчитана на меньшее напряжение, - и она перегорит, причем эффектно: с хлопком, вспышкой и почерневшим изнутри стеклом… Объясните, что для столь маленькой лампочки электронов в батарее слишком много, либо что пчелам не понравилось, что с ними играют без толку, и они испортили ее. Так и в розетке для человека - тока много или пчелы обидятся, и он может сильно пострадать.

Научите аккуратному обращению с электричеством!

Только помните: ваша цель - не запугать ребенка. Если в этом вопросе перегнете палку, велик риск, что в душе малыша поселится страх перед электричеством. Он будет панически бояться его, ему будет сложно пользоваться электроприборами, он будет их избегать и стараться сам их не включать. Правильнее не напугать, а научить аккуратности и бережливому отношению к току. Потому рассказывайте про риски, но не приукрашайте чрез меры все детали.

Для обучения обращению с электричеством уделите внимание на эти пункты:

нельзя включать любые электроприборы в доме без разрешения взрослых, они должны знать, что малыш включает и выключает телевизор, или другой крупный электроприбор;

недопустимо разбирать электрические приборы, даже если они отключены от розетки или малышу кажется, что требуется заменить какую-то деталь - например, перегоревшую лампочку в ;

нужно сразу же сообщать взрослым о любой проблеме с электроприбором: если перестал работать, начал неприятно пахнуть, дымиться или искрить, если разбился его корпус или порвался провод;

ни в коем случае нельзя мочить электроприбор или провода - вода, с одной стороны, может вывести его из строя, а с другой, является хорошим проводником для тока, а потому через нее может пойти электроудар;

обращаться с электроприборами надо аккуратно, не бросать их и не бить, все провода надо скручивать бережно, без изломов, а вытягивать их из розетки нужно не резко и не за провод, а плавно и за защитный штепсель;

на улице нельзя подходить к висящим со столба или торчащим из земли оборванным проводам и тем более касаться их, запрещено открывать дверцы трансформаторных будок и электрощитков;

покажите ребенку общепринятые символы электричества, которые должны сказать ему, что приближаться к обозначенным ими предметам и строениям без ведома взрослых не стоит ни при каких обстоятельствах.

И не забудьте к любопытству ребенка. Как бы вы ему ни втолковывали правила безопасности, он в любом случае осознанно или нет, малыш хоть раз попытается залезть в розетку, порвать провод и разбить электроприбор. Потому различные приспособления, от заглушек до специальных креплений для кабелей, жизненно необходимы!

А ваш ребенок уже знает про пользу и опасность электричества?

7 67468
Оставить комментарии 7

Главная / Электротехника

10.05.2016 15:50

Как рассказать детям про электрический ток? Данный вопрос часто возникает у родителей, которые хотят удовлетворить любопытство своих малышей и не перегружать их терминами.

Намедни проходил я собеседование на должность редактора одного детского журнала. Так вот там тоже дали задание - придумать, как детишкам рассказать об электрическом токе.

К этому заданию решил подойти с разных сторон:

1. Стихотворение.

3. Набросок разворота (с прозой и стихотворением)

4. Была задумка сделать ещё видеоролик, но, к сожалению, подвело оборудование (вышел из строя микрофон. Теперь представляю данные шедевры читателям "Зайкиного сайта", может благодаря этому они расскажут своим деткам про электрический ток.

В стихотворении намеренно использованы разные стили стихосложения, дабы показать разносторонние подходы.

Электрический ток

Что такое ток?
Дружок,
Это как речной поток,
Но бежит по проводам –
Свет и радость дарит нам.

Провода – проводники
Электрической реки.
Знай, что ток течёт по кругу
В электрической цепи.

Стоит цепь ту разомкнуть –
Остановит ток свой путь.

В проводах микрочастицы,
Электронами зовут,
Стоит только зарядиться
И они бегут, текут.

И от этого у нас
Всё работает тот час:

Лампочки, приборчики,
В игрушках все моторчики,
Мамина стиралка,
И папин Интернет.
На улице - фонарики,
В телеке - «Смешарики»...
Спасибо электрончикам
За службу столько лет.

Спросишь, кто ж их заряжает.
Поддержу твой интерес.
Батарейки помогают
Запустить в цепи процесс.
Только в небольших приборах
И по форме и на вес.
Для всего же остального
Строят ТЭС, АЭС и ГЭС

Ток невидим, невесом
Свет и радость – в каждый дом
Но всем не надо забывать,
Что с ним СОВСЕМ нельзя играть!

Опасно это очень
Для сыновей и дочек...


Электрический ток – это такая штука, чем-то похожая на течение реки. Ток также течёт мощным потоком в одном направлении. Только ток течёт по проводам и внутри этих проводов плавают не рыбы, а микрочастицы (электроны), которые бывают со знаками «+» и «-», их ещё называют положительно-заряженными и отрицательно-заряженными. А электрический ток как раз и есть движение этих заряженных частиц. Да, всё дело в заряде. Источником заряда для маленьких приборов и игрушек являются батарейки, которые заставляют электроны просыпаться и бегать, без заряда электроны двигаться никуда не захотят, а будут беспорядочно топтаться на месте. Но для того, чтоб светили лампочки, работали телевизоры, холодильники и стиральные машины батарейки не помогут, слишком мала у них сила заряда. Для этих целей люди построили огромные электростанции, именно от них электрический ток поступает в наши розетки и выключатели.
Течёт электрический ток обязательно по двум проводам: от источника к прибору по одному проводу, и обратно по другому проводу. Так образуется замкнутая электрическая цепь. Остановить это течение очень просто, стоит, например, нажать на кнопку выключателя или выдернуть вилку прибора из розетки и цепь разомкнётся. Электрический ток перестанет поступать в прибор, и прибор перестанет работать до следующего включения.


Электричество - это одна из форм энергии. Оно вырабатывается, например, в батарейках, но главный его источник - электростанции, откуда оно поступает в наши дома по толстым проводам, или кабелям. Попробуй представить себе, как течет вода в реке. Точно так же движется по проводам электричество. Вот почему электричество называется электрическим током . Электричество, которое никуда не движется, называется статическим.

Вспышка молнии - это мгновенный разряд статического электричества, скопившегося в грозовых тучах. В таких случаях электричество движется по воздуху от тучи к туче или от тучи - вниз, к земле.

Возьми пластмассовую расческу и несколько раз быстро и энергично проведи ею по волосам. Теперь поднеси расческу к кусочкам бумаги, и ты увидишь, что она притянет их, как магнит. Когда ты причесываешься, в расческе накапливается статическое электричество. Предмет, заряженный статическим электричеством, может притягивать другие предметы.

Электрически ток движется по проводам только в том случае, если они соединены в замкнутое кольцо - электрическую цепь . Возьмем, например, фонарик: провода, соединяющие батарейку, лампочку и выключатель, образуют замкнутую цепь. Электрическая цепь на расположенном выше рисунке действует по тому же принципу. Пока по цепи идет ток, лампочка горит. Если цепь разомкнуть - скажем, отсоединить провод от батарейки, - лампочка погаснет.

Материалы, которые пропускают электрический ток, называются проводниками. Из таких материалов - в частности, из меди, которая хорошо проводит электричество, - делают электрические провода . Провод под током представляет опасность для человека (наше тело - тоже проводник!), поэтому провода покрывают пластмассовой оплеткой. Пластмасса - это изолятор, то есть материал, который не пропускает ток.

ВНИМАНИЕ! Электричество опасно для жизни. С электроприборами и розетками следует обращаться очень осторожно. Не лазай по мачтам линии электропередачи, а еще лучше - не подходи к ним вообще!

Как узнать, какие материалы являются проводниками, а какие изоляторами? Попробуй провести один несложный опыт. Все, что тебе для этого понадобится, показано на снимке выше. Сначала тебе нужно будет собрать электрическую цепь - такую, как я описывал выше.

Отсоедини один из проводов. В результате цепь разомкнется и лампочка погаснет. Теперь возьми скрепку и положи ее так, чтобы восстановить цепь. Загорелась лампочка или нет?

Попробуй положить вместо скрепки что-нибудь другое, например вилку или ластик. Если лампочка загорится, значит, это проводник, если не загорится - изолятор.

Электричество вырабатывается на электростанциях. Оттуда оно поступает в города и села по линиям электропередачи - проводам, которые натянуты на высоких мачтах. Непосредственно в дома электричество поступает по проводам, проложенным под землей.

Этими игрушечными электрическими машинками можно управлять, меняя силу тока, который проходит по металлическому гоночному треку. Многие механизмы, приводимые в действие электричеством, оснащены сложными электронными цепями, которые управляют их работой.

Этот игрушечный поезд снабжен электрическим моторчиком. Ток, проходя по металлическим рельсам, поступает в моторчик. Под действием тока моторчик приводит в движение колеса. Когда электрический ток выключают, поезд останавливается.

Это интересно.
На крышах высоких зданий часто устанавливают громоотводы - металлические стержни, соединенные с землей. Металлы - хорошие проводники. Если в здание ударяет молния, металлический стержень притягивает электричество и разряд уходит в землю, не причиняя кому-либо вреда.

Приветствую, дорогие читатели! В данной статье я хочу рассказать вам о хите наших домашних игрушек, сделанных своими руками. Эта игрушка, сделанная еще пару лет назад, настолько нравится моему старшему и младшему сыну, что я просто не могу о ней не написать Эта игрушка у нас называется электростенд. Я ее делал прежде всего для того, чтобы научить ребёнка пользоваться выключателями, а затем появилась идея на основе этой игрушки рассказать об электричестве для детей. Ведь лучший способ рассказать о чем-то детям - это сделать что-то вместе с ними и показать наглядно, как работает.


В своей статье я расскажу вот о чем:

Мой электростенд, наверное один из простейших, которые можно сделать самостоятельно. Я не ставил перед собой задачу сделать что-то сложное и показать чудеса владения паяльником В то время, когда я делал первый вариант стенда, мы жили в Москве в съемном доме, свободного времени было мало и мне хотелось побыстрее сделать интересную развивающую игрушку для ребёнка своими руками. Игрушку хотел сделать из выключателей, вентилятора, лампочек. Первый вариант этой игрушки я сделал еще до и. В интернете находил стендов, но как ни странно то, что было сделано из выключателей и розеток НЕ РАБОТАЛО, т.е. это были выключатели, розетки и регуляторы, прикрученные к доске и все. Без батареек, лампочек, проводов. Я представил, что мой сын пощелкает выключателями, ну и все, на этом процесс изучения завершится и этот стенд будет пылиться в углу. Поэтому я решил подойти к вопросу более серьезно и сделал все работоспособным. Первый вариант стенда я сделал на основе салатницы Он долгое время у меня работал, пока сын не начал испытывать ее на прочность и корпус у нее не начал трескаться. Потом я доработал корпус и вот какой стенд у меня получился:


Простейший электрический стенд из кулера, трех выключателей и светодиодов

Электрический стенд для детей - детали и процесс изготовления

Для изготовления стенда в моем варианте понадобятся следующие материалы:

1. Пластиковое ведро

2. Компьютерный вентилятор от процессора

3. Два выключателя с фиксацией, один кнопочный выключатель

4. Четыре светодиода

5. Провода, обрезок гибкой проволоки длинной около 0,5 м и диаметром 1-2 мм.

6. Батарейка «крона»

7. Пластиковая бутылка на 1,5 литра

Из инструментов потребуется - дрель, паяльник, шило, пассатижи, бокорезы, канцелярский нож.

Сначала размечаем крепления для вентилятора (я разместил его на верху по центру). Затем крепим вентилятор (можно шурупами, можно, как у меня с помощью гибкой проволоки). По краям делаем отверстия для светодиодов и выключателей. У меня в процессе изготовления активно участвовал сын, а я ему в это время рассказывал, для чего нужна каждая деталь и что нужно будет сделать, чтобы все заработало.


Сын размечает отверстия для кулера

Светодиоды я разместил по краям на верхней части ведра. Под них сверлил отверстия, а потом приклеил изнутри чтобы не выпадали.

Кстати, в магазине радиодеталей нашел интересные светодиоды, которые при подключении питания мигают разными цветами - получается довольно-таки красиво. Мне вот интересно, там микросхема внутри и три встроенных светодиода (чтобы три цвета получилось), или как-то по-другому сделано?

Самое интересное для моего ребёнка было конечно разбираться старую нашу игрушку. В ней уже трещины были настолько большими, что не получалось восстановить, да и вид уже потерялся. Хорошо, что вся электрическая часть осталась в норме, поэтому я просто перенес детали в новый корпус.


Разбираем старую игрушку - вот это интересно

После светодиодов я закрепил выключатели и с обратной стороны, припаял провода. Выключатели у меня были со встроенными лампочками и я сделал так, чтобы при включении лампочка на самом выключателе тоже загоралась.

Для включения кулера я использовал кнопочный выключатель, потому как дети редко выключают игрушку, а так - нажал на кнопку работает, отпустил - выключилось
Батарейку я использовал аккумуляторную по тем же причинам (дети ее быстро разряжают), оказалось дешевле, чем каждый раз покупать новую. Для подключения батарейки «крона» я использовал специальный переходник, который крепится на батарейку и позволяет легко отключать и подключать батарейку.


Схема подключения электростенда

Для работы электростенда используется простейшая схема подключения - ведь у нас три функции:

  1. Включаем кнопку - загорается лампочка на кнопке и включается кулер
  2. Щелкаем один выключатель - загораются и начинают мигать светодиоды
  3. Щелкаем второй выключатель - загорается лампочка на выключателе

На схеме: выключатель ВК1 - выключатель для светодиодов, ВК 2 это кнопка, включающая кулер, а ВК 3 это выключатель, на котором загорается лампочка при включении. Л1 и Л2 это лампочки, встроенные в выключатели ВК1 и ВК2 соответственно.

Как играть с электростендом?

После подключения и проверки работы электрической части я закрепил на вентиляторе горлышко от пластиковой бутылки , расширяющейся частью вверх. Чтобы не крепить дополнительно проволочками я подобрал такой размер, чтобы оно плотно одевалось на кулер и не сваливалось. Для чего это сделано? Здесь самая фишка игры - ребёнку очень нравится, кидать сверху теннисные шарики, или другие мелкие игрушки на кулер и в результате они начинают либо крутиться, либо весело подпрыгивать))))) (Особенный восторг был от игрушечных человечков, которых мы так заставляли танцевать) Включение и выключение светодиодов - это габариты нашего электростенда, который стал удивительной машиной. В общем, можно посмотреть процесс на видео:

Как рассказать об электричестве для детей на примере электростенда?

Самое главное, конечно привлечь к изготовлению электростенда детей. Когда мы делали эту игрушку, я показывал сыну батарейку, подключал к ней проводами лампочку, давал возможность ему самому подключить, чтобы сына видел в какой момент загорается лампочка и что если цепь разомкнуть, то она сразу тухнет.
Об электричестве я рассказал так:

«В батарейке есть много частичек, невидимых, но у каждой из них есть сила. И чем больше частичек, тем более сильны они вместе. Называются они электроны. Их очень много в батарейке и они очень хотят выбраться на свободу. Бегать эти электроны могут только от одной клеммы батарейки к другой (показывал клеммы на батарейке).

Электроны могут легко бегать только по проводам, но когда им на пути встречается лампочка, или моторчик, то им бежать труднее и чтобы добежать они начинают отдавать часть своей силы. В результате мы видим свет от лампочки и моторчик у нас крутится. Чем дольше у нас будет гореть лампочка, или крутиться вентилятор от батарейки, тем больше электрончиков потеряет силу и батарейка будет садится.

А если электронам бежать некуда (убираем проводок от батарейки), то они никуда не бегут и силу свою не теряют. Чтобы снова запустить электроны в батарейку мы ее заряжаем и тогда можно будет опять подключать лампочку и вентилятор».

Вот такое объяснение использовал я, чтобы объяснить такие, казалось бы простые и в то же время и нам самими, взрослым не всегда понятные вещи. Ведь, насколько я помню, до сих пор еще не решили в науке - «электроны бегут от плюса к минусу, или от минуса к плюсу?»

А как Вы, уважаемые читатели объясняли детям об электричестве? Поделитесь в своих комментариях, ведь это очень нужная тема и интересная детям.

В повседневной жизни мы часто сталкиваемся с таким понятием как «электричество». Что же такое электричество, всегда ли люди знали о нём?

Без электричества представить нашу современную жизнь практически невозможно. Скажите, как можно обойтись без освещения и тепла, без электродвигателя и телефона, без компьютера и телевизора? Электричество настолько глубоко проникло в нашу жизнь, что мы порой и не задумываемся, что это за волшебник помогает нам в работе.

Этот волшебник – электричество. В чём же заключается суть электричества? Суть электричества сводится к тому, что поток заряженных частиц движется по проводнику (проводник – это вещество, способное проводить электрический ток) в замкнутой цепи от источника тока к потребителю. Двигаясь, поток частиц выполняют определённую работу.

Это явление называется «электрический ток ». Силу электрического тока можно измерить. Единица измерения силы тока - Ампер, получила своё название в честь французского ученого, который первым исследовал свойства тока. Имя ученого-физика – Андре Ампер.

Открытие электрического тока и других новшеств, связанных с ним, можно отнести к периоду: конец девятнадцатого - начало двадцатого века. Но наблюдали первые электрические явления люди ещё в пятом веке до нашей эры. Они замечали, что потёртый мехом или шерстью кусок янтаря притягивает к себе лёгкие тела, например, пылинки. Древние греки даже научились использовать это явление – для удаления пыли с дорогих одежд. Ещё они заметили, что если сухие волосы расчесать янтарным гребнем, они встают, отталкиваясь друг от друга.

Вернёмся ещё раз к определению электрического тока. Ток – направленное движение заряженных частиц. Если мы имеем дело с металлом, то заряженные частицы – это электроны. Слово «янтарь» по-гречески – это электрон.

Таким образом, мы понимаем, что всем нам известное понятие «электричество» имеет древние корни.

Электричество – это наш друг. Оно помогает нам во всём. Утром мы включаем свет, электрический чайник. Ставим подогревать пищу в микроволновую печь. Пользуемся лифтом. Едем в трамвае, разговариваем по сотовому телефону. Трудимся на промышленных предприятиях, в банках и больницах, на полях и в мастерских, учимся в школе, где тепло и светло. И везде «работает» электричество.

Как и многое в нашей жизни, электричество, имеет не только положительную, но и отрицательную сторону . Электрический ток, как волшебника-невидимку, нельзя рассмотреть, учуять его по запаху. Определить наличие или отсутствие тока можно только, используя приборы, измерительную аппаратуру. Первый случай поражения электрическим током со смертельным исходом был описан в 1862 году. Трагедия произошла при непреднамеренном соприкосновении человека с токоведущими частями. В дальнейшем случаев поражения электрическим током произошло немало.

Электричество! Внимание, электричество!

Этот рассказ об электричестве – для детей. Но, само по себе, электричество - понятие далеко не детское. Поэтому, хотелось бы и в этом рассказе обратиться к мамам и папам, бабушкам и дедушкам.

Уважаемые взрослые! Рассказывая об электричестве детям, не забудьте подчеркнуть, что ток – невидим, а потому особенно коварен. Что не нужно делать взрослым и детям? Не дотрагивайтесь руками, не подходите близко к проводам и электрокомплексам. Недалеко от линий электропередач, подстанций не останавливайтесь на отдых, не разводите костров, не запускайте летающие игрушки. Лежащий на земле провод может таить в себе смертельную опасность. Электрические розетки , если в доме маленький ребёнок, – объект особого контроля.

Главное требование, предъявляемое к взрослым - не только самим соблюдать правила безопасности, но и постоянно информировать детей о том, насколько может быть коварен электрический ток.

Заключение

Физики «дали доступ» человечеству к электричеству. Ради будущего учёные шли на лишения, тратили состояния, чтобы вершить великие открытия и дарить результаты своих трудов людям.

Будем бережно относится к трудам физиков, к электричеству, будем помнить о той опасности, которую оно потенциально несёт в себе.

Басню про электричество можно посмотреть

Электричество окружает детей повсюду: дома, на улице, в детсаду, в игрушках и бытовых приборах - сложно вспомнить сферу жизнедеятельности человека, где обходились бы без тока. А потому интерес детей к данной теме вполне объясним. Хотя рассказ о свойствах электричества - не только вопрос любознательности, но и… безопасности малыша!

В 2-3 года у маленького человечка начинается период, когда ему интересно все. Что это, зачем, как работает, почему оно такое, а не иное, как этим пользуются, чем полезно или вредно - миллион вопросов в сутки папе и маме гарантирован. Причем сфера интересов «почемучки» обширна: его волнуют как приземленные темы (вроде того, или), так и возвышенные (,). И расспросы об электричестве также естественны. Что такое ток, откуда берется и куда пропадает, когда щелкаем выключателем? Почему от электричества светится лампочка, и работает телевизор? Как папин или его работают без провода к розетке? Чем так опасен ток, что родители запрещают даже приближаться к этой розетке? Вариантов не счесть! Конечно, можно отмахнуться от них, сказав, что ребенок еще мал, чтобы понять эту тему (с точки зрения науки, электричество столь сложное понятие, о котором можно рассуждать не раньше 12-14 лет). Но такой подход ошибочен. Причем с точки зрения и воспитания, и безопасности. Пусть малыш не разберется в физике процесса, но знать суть электротока и относиться к нему с должным уважением ему вполне под силу.

Электричество: пчелы или электроны?

Итак, начнем с базового вопроса: что такое электричество? В общении с ребенком 2-3 лет возможно несколько подходов. Первый: игровой. Можно рассказать малышу, что внутри проводов живут, например, маленькие пчелы или муравьи, фактически невидимые человеческому глазу. И когда электроприбор выключен, они там покоятся, отдыхают. Но стоит подключить его к розетке (либо нажать на выключатель, если он соединен с сетью), как они начинают трудиться: бегать либо летать внутри провода вперед и назад без устали! И от такого их движения вырабатывается энергия, зажигающая лампочку или позволяющая работать тем или иным приборам. Причем количество таких пчелок-муравьишек в проводе может быть разным. Чем их больше и чем активнее они двигаются, тем выше сила тока - а значит, тем больший механизм они могут запустить. Проще говоря, чтобы светилась лампочка в карманном фонарике, нужно совсем мало таких «помощников», а чтобы осветить дом - нужно иметь запас электричества намного, намного больше. И тут важно подчеркнуть: такие пчелы хоть и работают на пользу людей, но могут серьезно обидеться, если к ним относиться небрежно. Причем обидой дело не ограничится - они могут и больно-больно укусить (и чем больше пчелок, тем сильнее будет укус). А потому нельзя лезть в розетку или разбирать электроприбор, а также касаться оголенных проводов у подключенных приборов - пчелам может не понравиться, что кто-то пытается мешать им работать…

Если же вам такой подход не по душе, вы предпочитаете отвечать ребенку на его вопросы с полной серьезностью, тогда можно рассказать о физическом явлении электричества, только адаптировав его для маленького человечка. Поясните, что внутри металлических проводов есть микрочастицы - электроны. Они, с одной стороны, настолько мелкие, что их даже в микроскоп невозможно рассмотреть, а с другой - их очень много. В обычном состоянии они находятся на одном месте и ничего не делают. Но когда включаете прибор, электроны начинают с большой скоростью передвигаться внутри проводов. Это движение и рождает энергию электричества. Чтобы малышу было понятно, как такое возможно, можно сравнить это с водой в трубах - не зря же говорят, что ток по проводам течет. Словно капли жидкости в трубочке, подталкивающие друг друга, следующие одна за другой, бегущие, пока не перекрыт вентиль, электроны действуют точно так - только у них вместо вентиля выключатель. А еще от прямого контакта с электронами, в отличие от воды, вы не намокаете, а получаете электрический удар. Это самый настоящий удар: ведь электронов очень много и они бегут с огромной скоростью. А потому, если встать у них на пути, они бьются в кожу с большой силой, что, конечно, очень больно. Поэтому, если прибор включен в розетку или оголился провод (что по сути равноценно разрыву трубы, когда вода вытекает наружу: и чем больше воды, тем сильнее ее напор), нельзя мешать ему. Пусть электроны тратят энергию на лампочку, а не на то, чтобы потратить ее, обидев малыша!

Демонстрируйте электроток на примерах

Какой бы подход в рассказе об электричестве вы ни выбрали, логичным для детей выступает следующий вопрос: а почему при включении прибора пчелы или электроны начинают в проводе двигаться, что их заставляет делать это? В таком случае надо в общих чертах рассказать о строении электросети, и желательно делать это с приведением наглядных примеров из окружающей жизни либо на фото- и видеоматериалах. Расскажите, что все-все провода в доме сходятся в один кабель, вмещающий нужное для жилья количество электронов/пчел. Далее он выходит на улицу и, опираясь на столбы, ведет к фабрике, где и производят эти частицы, - такой завод называют электростанцией. О том, как их производят (сжиганием угля, от привода на гидроэлектростанции или ветряках, от солнечных батарей), можно рассказать по желанию, если ребенок проявляет к этому интерес. Но обычно в 2-3 года хватает понятия, что есть такая фабрика, где делают «электрических пчел» или электроны. Хотя никто не запрещает провести вам с ребенком маленький, но наглядный эксперимент. Вам понадобится простейшая динамо-машина: с лампочкой и ручкой, от вращения которой светится лампочка. Малыш наверняка придет в восторг, видя, что может производить собственными руками электричество! Причем стоит ему перестать вращать рукоятку, и лампочка сразу гаснет - очень наглядно и просто.

Экспериментальная практика вообще крайне полезна - особенно в тех вопросах, где надо показать, что ток опасен. Для этого вам понадобится несколько батареек и пара лампочек. Вначале поясните, что батарейка - это такой маленький запас электричества: как консервы с едой, в которых припасено электронов для питания приборов на какое-то время. А потом покажите, как она работает: установили ее в игрушку и телефон, они работают. Закончился заряд пчелок/электронов - прибор выключился: и нужны или новые батарейки, или зарядить старые, «залив» из розетки партию «помощников» (подчеркните, что заряжать можно не все, а только батареи, называемые аккумуляторами). Теперь переходите к экспериментам. Возьмите батарейку на 9 В (ту, что принято именовать кроной) и предложите малышу прикоснуться одновременно к обоим контактам языком. Легкое жжение, которое почувствует, и есть проявление электрического удара - только слабым, ведь в батарейке пчелок или электронов очень мало. А в розетке их на порядок больше, а удар в десятки раз сильнее и больнее. Конечно, немалое количество детей захочет убедиться в этом. Потому нужен иной эксперимент: с парой разных лампочек - на 4,5 В и 9 В. Подключите ко все той же батарейке последнюю - она светится. А затем присоедините ту, что рассчитана на меньшее напряжение, - и она перегорит, причем эффектно: с хлопком, вспышкой и почерневшим изнутри стеклом… Объясните, что для столь маленькой лампочки электронов в батарее слишком много, либо что пчелам не понравилось, что с ними играют без толку, и они испортили ее. Так и в розетке для человека - тока много или пчелы обидятся, и он может сильно пострадать.

Научите аккуратному обращению с электричеством!

Только помните: ваша цель - не запугать ребенка. Если в этом вопросе перегнете палку, велик риск, что в душе малыша поселится страх перед электричеством. Он будет панически бояться его, ему будет сложно пользоваться электроприборами, он будет их избегать и стараться сам их не включать. Правильнее не напугать, а научить аккуратности и бережливому отношению к току. Потому рассказывайте про риски, но не приукрашайте чрез меры все детали.

Для обучения обращению с электричеством уделите внимание на эти пункты:

нельзя включать любые электроприборы в доме без разрешения взрослых, они должны знать, что малыш включает и выключает телевизор, или другой крупный электроприбор;

недопустимо разбирать электрические приборы, даже если они отключены от розетки или малышу кажется, что требуется заменить какую-то деталь - например, перегоревшую лампочку в;

нужно сразу же сообщать взрослым о любой проблеме с электроприбором: если перестал работать, начал неприятно пахнуть, дымиться или искрить, если разбился его корпус или порвался провод;

ни в коем случае нельзя мочить электроприбор или провода - вода, с одной стороны, может вывести его из строя, а с другой, является хорошим проводником для тока, а потому через нее может пойти электроудар;

обращаться с электроприборами надо аккуратно, не бросать их и не бить, все провода надо скручивать бережно, без изломов, а вытягивать их из розетки нужно не резко и не за провод, а плавно и за защитный штепсель;

на улице нельзя подходить к висящим со столба или торчащим из земли оборванным проводам и тем более касаться их, запрещено открывать дверцы трансформаторных будок и электрощитков;

покажите ребенку общепринятые символы электричества, которые должны сказать ему, что приближаться к обозначенным ими предметам и строениям без ведома взрослых не стоит ни при каких обстоятельствах.

И не забудьте к любопытству ребенка. Как бы вы ему ни втолковывали правила безопасности, он в любом случае осознанно или нет, малыш хоть раз попытается залезть в розетку, порвать провод и разбить электроприбор. Потому различные приспособления, от заглушек до специальных креплений для кабелей, жизненно необходимы!

Физика электричества - это то, с чем приходится сталкиваться каждому из нас. В статье мы рассмотрим основные понятия, связанные с ней.

Что такое электричество? Для человека непосвященного оно ассоциируется со вспышкой молнии или с энергией, питающей телевизор и стиральную машину. Он знает, что электропоезда используют электрическую энергию. О чем еще он может рассказать? О нашей зависимости от электричества ему напоминают линии электропередач. Кто-то сможет привести и несколько других примеров.

Однако с электричеством связано немало других, не столь очевидных, но повседневных явлений. Со всеми ними нас знакомит физика. Электричество (задачи, определения и формулы) мы начинаем изучать еще в школе. И узнаем много интересного. Оказывается, бьющееся сердце, бегущий спортсмен, спящий ребенок и плавающая рыба - все вырабатывает электрическую энергию.

Электроны и протоны

Определим основные понятия. С точки зрения ученого, физика электричества связана с движением электронов и других заряженных частиц в различных веществах. Поэтому научное понимание природы интересующего нас явления зависит от уровня знаний об атомах и составляющих их субатомных частицах. Ключом к этому пониманию служит крошечный электрон. Атомы любого вещества содержат один или более электронов, движущихся по различным орбитам вокруг ядра подобно тому, как планеты вращаются вокруг Солнца. Обычно число электронов в атоме равно количеству протонов в ядре. Однако протоны, будучи значительно тяжелее электронов, можно считать как бы закрепленными в центре атома. Этой предельно упрощенной модели атома вполне достаточно, чтобы объяснить основы такого явления, как физика электричества.


О чем еще необходимо знать? Электроны и протоны имеют одинаковый по величине электрический заряд (но разного знака), поэтому они притягиваются друг к другу. Заряд протона является положительным, а электрона - отрицательным. Атом, имеющий электронов больше или меньше, чем обычно, называется ионом. Если в атоме их недостаточно, то он называется положительным ионом. Если же он содержит их избыток, то его называют отрицательным ионом.

Когда электрон покидает атом, тот приобретает некоторый положительный заряд. Электрон, лишенный своей противоположности - протона, либо движется к другому атому, либо возвращается к прежнему.

Почему электроны покидают атомы?

Это объясняется несколькими причинами. Наиболее общая состоит в том, что под воздействием импульса света или какого-то внешнего электрона движущийся в атоме электрон может быть выбит со своей орбиты. Тепло заставляет атомы колебаться быстрее. Это означает, что электроны могут вылететь из своего атома. При химических реакциях они также перемещаются от атома к атому.

Хороший пример взаимосвязи химической и электрической активности дают нам мышцы. Их волокна сокращаются при воздействии электрического сигнала, поступающего из нервной системы. Электрический ток стимулирует химические реакции. Они-то и приводят к сокращению мышцы. Внешние электрические сигналы нередко используются для искусственного стимулирования мышечной активности.


Проводимость

В некоторых веществах электроны под действием внешнего электрического поля движутся более свободно, чем в других. Говорят, что такие вещества обладают хорошей проводимостью. Их называют проводниками. К ним относится большинство металлов, нагретые газы и некоторые жидкости. Воздух, резина, масло, полиэтилен и стекло плохо проводят электричество. Их называют диэлектриками и используют для изоляции хороших проводников. Идеальных изоляторов (абсолютно не проводящих тока) не существует. При определенных условиях электроны можно удалить из любого атома. Однако обычно эти условия столь трудно выполнить, что с практической точки зрения подобные вещества можно считать непроводящими.

Знакомясь с такой наукой, как физика (раздел "Электричество"), мы узнаем, что существует особая группа веществ. Это полупроводники. Они ведут себя отчасти как диэлектрики, а отчасти - как проводники. К ним, в частности, относятся: германий, кремний, окись меди. Благодаря своим свойствам полупроводник находит множество применений. Например, он может служить электрическим вентилем: подобно клапану велосипедной шины он позволяет зарядам двигаться только в одном направлении. Такие устройства называются выпрямителями. Они используются и в миниатюрных радиоприемниках, и на больших электростанциях для преобразования переменного тока в постоянный.

Тепло представляет собой хаотичную форму движения молекул или атомов, а температура - мера интенсивности этого движения (у большинства металлов с понижением температуры движение электронов становится более свободным). Это означает, что сопротивление свободному движению электронов падает с уменьшением температуры. Другими словами, проводимость металлов возрастает.

Сверхпроводимость

В некоторых веществах при очень низких температурах сопротивление потоку электронов исчезает полностью, и электроны, начав движение, продолжают его неограниченно. Это явление называется сверхпроводимостью. При температуре несколько градусов выше абсолютного нуля (- 273 °С) она наблюдается в таких металлах, как олово, свинец, алюминий и ниобий.

Генераторы Ван де Граафа

В школьную программу входят различные опыты с электричеством. Существует можество видов генераторов, об одном из которых нам хотелось бы подробнее рассказать. Генератор Ван де Граафа используется для получения сверхвысоких напряжений. Если предмет, содержащий избыток положительных ионов, поместить внутрь контейнера, то на внутренней поверхности последнего появятся электроны, а на внешней - такое же количество положительных ионов. Если теперь коснуться внутренней поверхности заряженным предметом, то на него перейдут все свободные электроны. На внешней же положительные заряды останутся.

В генераторе Ван де Граафа положительные ионы от источника наносятся на ленту конвейера, проходящего внутри металлической сферы. Лента связана с внутренней поверхностью сферы с помощью проводника в виде гребня. Электроны стекают с внутренней поверхности сферы. На внешней же стороне ее появляются положительные ионы. Эффект можно усилить, используя два генератора.


Электрический ток

В школьный курс физики входит и такое понятие, как электрический ток. Что же это такое? Электрический ток обусловлен движением электрических зарядов. Когда электрическая лампа, соединенная с батареей, включена, ток течет по проводу от одного полюса батареи к лампе, затем через ее волосок, вызывая его свечение, и возвращается назад по второму проводу к другому полюсу батареи. Если выключатель повернуть, то цепь разомкнется - движение тока прекратится, и лампа погаснет.


Движение электронов

Ток в большинстве случаев представляет собой упорядоченное движение электронов в металле, служащем проводником. Во всех проводниках и некоторых других веществах всегда происходит какое-то случайное их движение, даже если ток не протекает. Электроны в веществе могут быть относительно свободны или сильно связаны. Хорошие проводники имеют свободные электроны, способные перемещаться. А вот в плохих проводниках, или изоляторах, большинство этих частиц достаточно прочно связано с атомами, что препятствует их движению.

Иногда естественным или искусственным путем в проводнике создается движение электронов в определенном направлении. Этот поток и называют электрическим током. Он измеряется в амперах (А). Носителями тока могут служить также ионы (в газах или растворах) и «дырки» (нехватка электронов в некоторых видах полупроводников. Последние ведут себя как положительно заряженные носители электрического тока. Чтобы заставить электроны двигаться в том или ином направлении, необходима некая сила. В природе ее источниками могут быть: воздействие солнечного света, магнитные эффекты и химические реакции. Некоторые из них используются для получения электрического тока. Обычно для этой цели служат: генератор, использующий магнитные эффекты, и элемент (батарея), действие которого обусловлено химическими реакциями. Оба устройства, создавая электродвижущую силу (ЭДС), заставляют электроны двигаться в одном направлении по цепи. Величина ЭДС измеряется в вольтах (В). Таковы основные единицы измерения электричества.

Величина ЭДС и сила тока связаны между собой, как давление и поток в жидкости. Водопроводные трубы всегда заполнены водой под определенным давлением, но вода начинает течь, только когда открывают кран.


Аналогично электрическая цепь может быть соединена с источником ЭДС, но ток в ней не потечет до тех пор, пока не будет создан путь, по которому могут двигаться электроны. Им может быть, скажем, электрическая лампа или пылесос, выключатель здесь играет роль крана, «выпускающего» ток.

Соотношение между током и напряжением

По мере роста напряжения в цепи растет и ток. Изучая курс физики, мы узнаем, что электрические цепи состоят из нескольких различных участков: обычно это выключатель, проводники и прибор - потребитель электричества. Все они, соединенные вместе, создают сопротивление электрическому току, которое (при условии постоянства температуры) для этих компонентов не изменяется со временем, но для каждого из них различно. Поэтому, если одно и то же напряжение применить к лампочке и к утюгу, то поток электронов в каждом из приборов будет различен, поскольку различны их сопротивления. Следовательно, сила тока, протекающего через определенный участок цепи, определяется не только напряжением, но и сопротивлением проводников и приборов.

Закон Ома

Величина электрического сопротивления измеряется в омах (Ом) в такой науке, как физика. Электричество (формулы, определения, опыты) - обширная тема. Мы не будем выводить сложные формулы. Для первого знакомства с темой достаточно того, что было сказано выше. Однако одну формулу все-таки стоит вывести. Она совсем несложная. Для любого проводника или системы проводников и приборов соотношение между напряжением, током и сопротивлением задается формулой: напряжение = ток х сопротивление. Это математическое выражение закона Ома, названного так в честь Георга Ома (1787-1854 гг.), который первым установил взаимосвязь этих трех параметров.

Физика электричества - очень интересный раздел науки. Мы рассмотрели лишь основные понятия, связанные с ней. Вы узнали, что такое электричество, как оно образуется. Надеемся, эта информация вам пригодится.

Электричество для "чайников". Школа для электрика

Предлагаем небольшой материал по теме: «Электричество для начинающих». Он даст первоначальное представление о терминах и явлениях, связанных с движением электронов в металлах.


Особенности термина

Электричество представляет собой энергию маленьких заряженных частиц, движущихся в проводниках в определенном направлении.

При постоянном токе не наблюдается изменения его величины, а также направления движения за определенный промежуток времени. Если в качестве источника тока выбирается гальванический элемент (батарейка), в таком случае заряд движется упорядоченно: от отрицательного полюса к положительному концу. Процесс продолжается до тех пор, пока он полностью не исчезнет.

Переменный ток периодически изменяет величину, а также направление движения.


Схема передачи переменного тока

Попробуем понять, что такое фаза в электричестве. Это слово слышали все, но далеко не всем понятен его истинный смысл. Не будем углубляться в детали и подробности, выберем только тот материал, который необходим домашнему мастеру. Трехфазная сеть является способом передачи электрического тока, при котором по трем разным проводам протекает ток, а по одному идет его возврат. Например, в электрической цепи есть два провода.

По первому проводу к потребителю, например, к чайнику, идет ток. Второй провод используется для его возвращения. При размыкании такой цепи, прохождения электрического заряда внутри проводника не будет. Данная схема описывает однофазную цепь. Что такое фаза в электричестве? Фазой считают провод, по которому протекает электрический ток. Нулевым называют провод, по которому осуществляется возврат. В трехфазной цепи присутствует сразу три фазных провода.

Электрический щиток в квартире необходим для распределения электрического тока по всем помещениям. Трехфазные сети считают экономически целесообразными, поскольку для них не нужны два нулевых провода. При подходе к потребителю, идет разделение тока на три фазы, причем в каждой есть по нолю. Заземлитель, который используется в однофазной сети, не несет рабочей нагрузки. Он является предохранителем.

К примеру, при возникновении короткого замыкания появляется угроза удара током, пожара. Для предотвращения такой ситуации, величина тока не должна превышать безопасный уровень, избыток уходит в землю.

Пособие "Школа для электрика" поможет начинающих мастерам справляться с некоторыми поломками бытовых приборов. Например, если возникли проблемы при функционировании электрического двигателя стиральной машины, ток будет попадать на внешний металлический корпус.

При отсутствии заземления заряд будет распределяться по машине. При прикосновении к ней руками, в роли заземлителя выступит человек, получив удар электрическим током. При наличии провода заземления такой ситуации не возникнет.

Особенности электротехники

Пособие «Электричество для чайников» пользуется популярностью у тех, кто далек от физики, но планирует использовать эту науку в практических целях.

Датой появления электротехники считают начало девятнадцатого века. Именно в это время был создан первый источник тока. Открытия, сделанные в области магнетизма и электричества, сумели обогатить науку новыми понятиями и фактами, обладающими важным практическим значением.

Пособие «Школа для электрика» предполагает знакомство с основными терминами, касающимися электричества.


Во многих сборниках по физике есть сложные электрические схемы, а также разнообразные непонятные термины. Для того чтобы новички могли разобраться во всех тонкостях данного раздела физики, было разработано специальное пособие «Электричество для чайников». Экскурсию в мир электрона необходимо начинать с рассмотрения теоретических законов и понятий. Наглядные примеры, исторические факты, используемые в книге «Электричество для чайников», помогут начинающим электрикам усваивать знания. Для проверки успеваемости можно использовать задания, тесты, упражнения, связанные с электричеством.

Если вы понимаете, что у вас недостаточно теоретических знаний для того, чтобы самостоятельно справиться с подключением электрической проводки, обратитесь к справочникам для «чайников».

Безопасность и практика

Для начала нужно внимательно изучить раздел, касающийся техники безопасности. В таком случае во время работ, связанных с электричеством, не будет возникать чрезвычайных ситуаций, опасных для здоровья.

Для того чтобы на практике реализовать теоретические знания, полученные после самостоятельного изучения основ электротехники, можно начать со старой бытовой техники. До начала ремонта обязательно ознакомьтесь с инструкцией, прилагаемой к прибору. Не забывайте, что с электричеством шутить не нужно.

Электрический ток связан с передвижением электронов в проводниках. Если вещество не способно проводить ток, его называют диэлектриком (изолятором).

Для движения свободных электронов от одного полюса к другому между ними должна существовать определенная разность потенциалов.

Интенсивность тока, проходящего через проводник, связана с количеством электронов, проходящих через поперечное сечение проводника.

На скорость прохождения тока влияет материал, длина, площадь сечения проводника. При увеличении длины провода, увеличивается его сопротивление.

Заключение

Электричество является важным и сложным разделом физики. Пособие "Электричество для чайников" рассматривает основные величины, характеризующие эффективность работы электрических двигателей. Единицами измерения напряжения являются вольты, ток определяется в амперах.

У любого источника электрической энергии существует определенная мощность. Она подразумевает количество электричества, вырабатываемое прибором за определенный промежуток времени. Потребители энергии (холодильники, стиральные машины, чайники, утюги) также имеют мощность, расходуя электричество во время работы. При желании можно провести математические расчеты, определить примерную плату за каждый бытовой прибор.

Электрический ток

Классическая электродинамика
Электричество · Магнетизм
Электростатика Магнитостатика Электродинамика Электрическая цепь Ковариантная формулировка Известные учёные
См. также: Портал:Физика
У этого термина существуют и другие значения, см. Ток.

Электри́ческий ток - направленное (упорядоченное) движение частиц или квазичастиц - носителей электрического заряда.

Такими носителями могут являться: в металлах - электроны, в электролитах - ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определённых условиях - электроны, в полупроводниках - электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (не происходит в сверхпроводниках);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости . Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционным .

Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.

  • Постоянный ток - ток, направление и величина которого не меняются во времени.
  • Переменный ток - электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток - электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток - периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток - «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты - переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей (см. Длинная линия) .
  • Пульсирующий ток - это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток - это электрический ток, не изменяющий своего направления.

Вихревые токи

Основная статья: Вихревые токи

Вихревые токи (токи Фуко) - «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц..

Дрейфовая скорость электронов

Скорость (дрейфовая) направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм - в 20 раз медленнее скорости улитки[источник не указан 257 дней ]. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока

Основная статья: Сила тока

Электрический ток имеет количественные характеристики: скалярную - силу тока, и векторную - плотность тока.

Сила тока - физическая величина, равная отношению количества заряда Δ Q {\displaystyle \Delta Q} , прошедшего за некоторое время Δ t {\displaystyle \Delta t} через поперечное сечение проводника, к величине этого промежутка времени.

I = Δ Q Δ t . {\displaystyle I={\frac {\Delta Q}{\Delta t}}.}

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A).

По закону Ома сила тока I {\displaystyle I} на участке цепи прямо пропорциональна напряжению U {\displaystyle U} , приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению R {\displaystyle R} :

I = U R . {\displaystyle I={\frac {U}{R}}.}

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна. Поэтому применяют следующие понятия:

  • мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
  • амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
  • эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.

Плотность тока - вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде j → {\displaystyle {\vec {j}}} пропорциональна напряжённости электрического поля E → {\displaystyle {\vec {E}}} и проводимости среды σ {\displaystyle \ \sigma } :

J → = σ E → . {\displaystyle {\vec {j}}=\sigma {\vec {E}}.}

Мощность

Основная статья: Закон Джоуля - Ленца

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление - сопротивление теплообразованию;
  • реактивное сопротивление - «сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно)» (БСЭ).

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля - Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

P = I U = I 2 R = U 2 R {\displaystyle P=IU=I^{2}R={\frac {U^{2}}{R}}}

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь p {\displaystyle p} определяется скалярным произведением вектора плотности тока j → {\displaystyle {\vec {j}}} и вектора напряжённости электрического поля E → {\displaystyle {\vec {E}}} в данной точке:

P = (j → E →) = σ E 2 = j 2 σ {\displaystyle p=\left({\vec {j}}{\vec {E}}\right)=\sigma E^{2}={\frac {j^{2}}{\sigma }}}

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны λ {\displaystyle \lambda } , зависимость сопротивления от длины волны и проводника относительно проста:

R = 3200 (L λ) {\displaystyle R=3200\left({\frac {L}{\lambda }}\right)}

Наиболее применяемому электрическому току со стандартной частотой 50 Гц соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота

См. также: Частота

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока - наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения

Основная статья: Ток смещения (электродинамика)

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения j D → {\displaystyle {\vec {j_{D}}}} - векторная величина, пропорциональная скорости изменения электрического поля E → {\displaystyle {\vec {E}}} во времени:

J D → = ∂ E → ∂ t {\displaystyle {\vec {j_{D}}}={\frac {\partial {\vec {E}}}{\partial t}}}

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения I D {\displaystyle I_{D}} в конденсаторе определяется по формуле:

I D = d Q d t = − C d U d t {\displaystyle I_{D}={\frac {{\rm {d}}Q}{{\rm {d}}t}}=-C{\frac {{\rm {d}}U}{{\rm {d}}t}}} ,

где Q {\displaystyle Q} - заряд на обкладках конденсатора, U {\displaystyle U} - разность потенциалов между обкладками, C {\displaystyle C} - ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы - здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма - ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты - «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Электрические токи в природе

Внутриоблачные молнии над Тулузой, Франция. 2006 год

Атмосферное электричество - электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин. В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю. Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма - естественный коронный электрический разряд.

Биотоки - движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие - электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине

  • диагностика - биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология.
    • Электроэнцефалография - метод исследования функционального состояния головного мозга.
    • Электрокардиография - методика регистрации и исследования электрических полей при работе сердца.
    • Электрогастрография - метод исследования моторной деятельности желудка.
    • Электромиография - метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.
  • Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Электробезопасность

Основная статья: Электробезопасность

Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • минимально ощутимый человеком переменный ток составляет около 0,6-1,5 мА (переменный ток 50 Гц) и 5-7 мА постоянного тока;
  • пороговым неотпускающим называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного - 50-80 мА;
  • фибрилляционным порогом называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России, в соответствии с Правилами технической эксплуатации электроустановок потребителей и Правилами по охране труда при эксплуатации электроустановок, установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Как объяснить ребенку что такое электричество, если я сам этого не понимаю?

Svetlana52

Можно очень просто и наглядно показать что такое электричество и как оно получается, нужен для этого фонарик который работает от батарейки или маленькая лампа от фонарика - задача получить электричество, а именно чтобы лампочка зажглась. Для этого возьмем клубень картофеля и две проволоки медную и оцинкованную и втыкаем к картошку - используем как батарейку- на медном конце плюс, на оцинкованном минус - аккуратно присоединяем к фонарику, или лампочке - должна зажечься. Чтобы напряжение стало выше можно последовательно соединить несколько картофелин. Проводить такие опыты с ребенком интересно и Вам тоже, думаю, доставит удовольствие.

Ракитин сергей

Самая простая аналогия - с водопроводными трубами, по которым течет горячая вода. Насос давит на воду, создавая давление - аналогом его будет напряжение в электросети, аналогом тока - поток воды, аналог электрического сопротивления - диаметр трубы. Т.е. если труба тонкая (большое электрическое сопротивление), то струйка воды будет тоже тонкой (маленький ток), чтобы набрать ведро воды (получить электрическую мощность) через тонкую трубу нужен большой напор (большое напряжение) (поэтому высоковольтные провода сравнительно тонкие, низковольтные - толстые, хотя передается по ним одинаковая мощность).

Ну а почему вода горячая - это чтобы ребенок понял, что электрический ток может обжечь не хуже кипятка, а вот если надеть толстую резиновую перчатку (диэлектрик), то ни горячая вода, ни ток вас уже не обожгут. Ну вот как-то так (разве что вот еще - в трубах перемещаются молекулы воды, в электрических проводах - электроны, заряженные частицы атомов металла, из которого эти провода сделаны, в других материалах, типа резины, электроны крепко сидят внутри атомов, двигаться не могут, поэтому ток такие вещества не проводят).

Inna beseder

Только что хотела задать вопрос "Что такое электричество?" и попала сюда. Знаю точно, что никто до сих пор не знает, как так происходит, что когда в одном месте включают рубильник, то в другом (за сотни километров) моментально загорается лампочка. Что именно бежит по проводам? Что из себя представляет ток? А как его можно исследовать, если он бьётся, зараза))?

А ребёнку сам механизм этого процесса можно показать и на картошке, как посоветовали в Лучшем ответе. Но со мной такой номер не пройдёт!

Volck-79

Смотря сколько ему лет. Если 12-14 и он ни бельмеса не понимает, то, извините, поздно и безнадежно. Ну, а ежели лет пять или восемь (к примеру) - растолкуйте, что все эти штучки (дырочки, провода, всякие прочие красивые предметы) здорово кусаются, особенно если их трогать, лизать, во что-нибудь засовывать, или наоборот в них пальчики совать.

Анфо-анфо

Моей дочке - 3 года. В свое время я ей просто сказала, что это - опасно, и в розетки она теперь не лезет. А попозже объясню, что электричество - это такая энергия, которая дает свет, от которой работает телевизор, компьютер и другая техника. Когда станет школьницей, изучит на физике более подробно.

Ynkinamoy

знаете много способов объяснить ребенку что это нельзя,что это опасно,я думаю что ребенка надо учить этому,показывать на ризетку и говорит нельзя ва ва будет.если всё таки ребенку это интересно и он очень хочет туда залезть,надо просо установит специальные пропки что бы ребенок не смог засунуть туда палец или что то метталическое,ну лучше всего и пропки применять и учить что это будет больно ва ва,что нельзя это делать что это очень плохо что будут маме папе плохо если он будет это делать,довести до ребенка что нельзя этого делать,и пользуйтесь пропками.всё будет хорошо

Ksi makarova

Сейчас "век продвинутого интернета", задайте вопрос любому поисковику, можно даже с формулировкой "как объяснить ребенку что такое электричество"))

Я отвечая на каверзные вопросы подрастающего сына, успела таким образом множество тем изучить - и ребенку хорошо, и родителям полезно.

Наталья Фролова
Занятие познавательного цикла «Электричество» для детей 6–7 лет

Задачи :

Образовательные :

Обобщить знания детей об электрических приборах , об их назначении в быту;

познакомить с понятиями «электричество » , «электрический ток » ;

познакомить с правилами безопасного обращения с электроприборами .

Развивающие :

Развивать умение работать с моделями;

Развивать стремление к поисково-познавательной деятельности ;

Развивать мыслительную активность, любознательность, умение делать выводы.

Воспитательная :

Воспитывать интерес к познанию окружающего мира ;

Используемые медиа-объекты : стихи, игры, фото электроприборов ; электронно -образовательные ресурсы : презентация «Электричество » , мультфильм.

Используемое оборудование : проектор, экран, ноутбук, спортинвентарь : мяч.

Предварительная работа : беседы, просмотр мультфильмов Тетушки Совы.

Словарная работа : активизировать в речи прилагательные, существительные, обобщающие слова. Формировать и обогащать словарь (электричество , электроприборы , корыто, стиральная доска)

Ход ЗАНЯТИЯ

I. Мотивация

Звучит музыка.

Воспитатель : - Здравствуйте, ребята. Сегодня мы с вами поговорим об электричестве , о безопасности в доме, поиграем в интересные игры и узнаем, как электричество появляется в наших домах.

II. Воспитатель : - Послушайте стихотворение

Очень любим дом мы свой,

И уютный, и родной.

Но не каждый бы сумел

Переделать массу дел.

Нужно дома нам убрать,

Приготовить, постирать,

А ещё бельё погладить…

Как со всей работой сладить!

И чудесно, что сейчас

Есть помощники у нас.

Труд они нам облегчают,

Время наше сберегают.

Воспитатель : - О каких помощниках говорится в стихотворении?

Воспитатель : - А теперь давайте представим, что мы попали во времена, когда человек ещё на знал ничего об электричестве , а значит и об электроприборах он не знал и не думал. Но он готовил себе пищу, стирал бельё и убирал свой дом.

III. БЕСЕДА ОБ ПРИБОРАХ «Что есть, что было»

Воспитатель : Давайте поговорим, что помогало хозяйке раньше, а что сейчас.

Воспитатель : - Что это? (на экране слайд – корыто)

Дети : корыто, доска для стирки.

Воспитатель : - Правильно, это корыто. Как думаете, что в нём делали?

Дети : стирали

Воспитатель : - А как сейчас стирает ваша мама? Что ей помогает?

Дети : стиральная машинка

Воспитатель : - Что это такое?

Дети : веник

Воспитатель : - Для чего он нужен?

Дети : убирать грязь, подметать пол

Воспитатель : - А что сейчас помогает убирать дом вместо веника?

Дети : пылесос

Воспитатель : - Правильно. Посмотрите, что изображено здесь?

Дети : утюг

Воспитатель : - Для чего он нужен?

Дети : гладить белье

Воспитатель : - Посмотрите какой раньше был утюг. Он тяжелый, в него закладывали угли и пока они горячие – гладили. Посмотрите какой утюг стал сейчас. Он легкий, удобный и быстро гладит.

Воспитатель : - Что это?

Дети : печка, печь

Воспитатель : - Как вы думаете, для чего она была нужна?

Дети : готовить пищу, разогревать, обогревала дом

Воспитатель : - Какие приборы используются в наше время вместо печи?

Дети : микроволновая печь, электроплита , электрообогреватель

Воспитатель : - Что это?

Дети : свеча

Воспитатель : - Для чего она была нужна?

Дети : освещать комнату

Воспитатель : - Какой прибор заменил свечу?

Дети : лампы, люстры

Воспитатель : - Молодцы, справились с заданием. Теперь вы знаете, сколько приборов усовершенствовал человек, благодаря электричеству .

Воспитатель : - А как вы думаете, что нужно, чтобы все электроприборы заработали ?

Дети : электричество , ток, провода

Воспитатель : - Совершенно верно. Все электроприборы работают от электричества . Но, прежде чем я вам расскажу откуда появляется электричество , немножко разомнёмся.

Воспитатель : - Выходите на ковер. Вставайте в круг. Я буду называть электрический прибор , а тому, кому попадет в руки мяч, будет говорить, какие действия он выполняет (утюг, фен, микроволновка, холодильник, чайник, пылесос, вентилятор) . А теперь я буду называть прибор, который использовали раньше, а вы будете называть то , чем его заменили в наше время (свеча, корыто, веник) .

Воспитатель : - Видите, как много электроприборов нас окружает . Они – наши лучшие помощники. Все они делают нашу жизнь удобной и разнообразной. Без них человеку было бы трудно. Все эти приборы работают от электричества .

Воспитатель : - А теперь задание такое : не поворачивая тела, только вертя головой, поищите вокруг себя картинки с изображением электроприборов (дети глазами находят картинки и называют их) .

Воспитатель : - Продолжим беседу об электричестве . Садитесь на стульчики.

IV. РАССКАЗ ВОСПИТАТЕЛЯ «ОТКУДА БЕРЁТСЯ ЭЛЕКТРИЧЕСТВО »

Воспитатель : - А кто знает, откуда берется электричество (ответы детей )

Воспитатель : - Электрический ток вырабатывается на больших мощных электростанциях . Чтобы получить электричество , на таких станциях используется пар, солнечный свет, вода и ветер (показ слайдов с

Понравилась статья? Поделитесь ей