Контакты

Химия физическая. Предмет физической химии. Её значение Научное и прикладное значение физической химии

ФИЗИЧЕСКАЯ ХИМИЯ - раздел химии, посвященный изучению взаимосвязи химических и физических явлений в природе. Положения и методы Ф. х. имеют важное значение для медицины и медико-биологических наук, методы Ф. х. используются для изучения жизненных процессов как в норме, так и при патологии.

Основными предметами изучения Ф. х. являются строение атомов (см. А том) и молекул (см. Молекула), природа хим. связей, хим. равновесие (см. Равновесие химическое) и кинетика (см. Кинетика химическая, Кинетика биологических процессов), катализ (см.), теория газов (см.), жидкостей и растворов (см.), структура и хим. свойства кристаллов (см.) и полимеров (см. Высокомолекулярные соединения), термодинамика (см.) и тепловые эффекты хим. реакций (см. Термохимия), поверхностные явления (см. Детергенты, Поверхностное натяжение, Смачивание), свойства р-ров электролитов (см.), электродные процессы (см. Электроды) и электродвижущие силы, коррозия металлов, фотохим. и радиационные процессы (см. Фотохимические реакции, Электромагнитное излучение). Большинство теорий Ф. х. базируется на законах статики, квантовой (волновой) механики и термодинамики. При изучении поставленных проблем в Ф. х. широко применяют различные сочетания экспериментальных методов физики и химии, так наз. физ.-хим. методы анализа, основы к-рых были разработаны в 1900-1915 гг.

К наиболее распространенным фи-зико-химическихм методам второй половины 20 в. относятся электронный парамагнитный резонанс (см.), ядерный магнитный резонанс (см.), масс-спектрометрия (см.), использование эффекта Мессбауэ-ра (ядерный гамма-резонанс), радиоспектроскопия (см. Спектроскопия), спектрофотометрия (см.) и флюориметрия (см.), рентгеноструктурный анализ (см.), электронная микроскопия (см.), улыпрацентрифу-гирование (см.), газовая и жидкостная хроматография (см.), электрофорез (см.), изоэлектрическое фокусирование (см.), полярография (см.), потенциометрия (см. Потенциометрическое титрован ие), кондуктомет-рия (см.), осмометрия (см. Осмотическое давление), эбулли ометрия (см.) и др.

Термин «физическая химия» впер-вые появился в трудах нем. алхимика Кунрата (H. Kuhnrath, 1599), однако долгое время смысл, вкладываемый в этот термин, не соответствовал истинному его значению. Задачи Ф. х., близкие к их современному пониманию, впервые сформулировал М. В. Ломоносов в курсе «Введение в истинную физическую химию», прочитанном им в 1752 г. студентам Петербургской акадехмии наук: физическая химия, по М. В. Ломоносову, есть наука, объясняющая на основании положений и опытов физики то, что происходит в смешанных телах при хим. реакциях. Систематическое преподавание Ф. х. было начато с 1860 г. в Харьковском ун-те H. Н. Бекетовым, к-рый впервые на естественном ф-те этого ун-та организовал физико-химическое отделение. Вслед за Харьковским ун-том преподавание Ф. х. было введено в Казанском (1874), Юрьевском (1880) и Московском (1886) ун-тах. С 1869 г. начинает выходить журнал Русского физико-химического об-ва. За рубежом кафедра физической химии впервые была учреждена в Лейпциге в 1887 г.

Формирование Ф. х. как самостоятельной научной дисциплины связано с атомно-молекулярным учением, т. е. прежде всего с открытием в 1748-1756 гг. М. В. Ломоносовым и в 1770-1774 гг. А. Лавуазье закона сохранения массы веществ при хим. реакциях. Работы Рихтера (J. В. Richter, 1791 - 1802), открывшего закон паев (эквивалентов), Пруста (J. L. Proust, 1808), открывшего закон постоянства состава, и др. способствовали созданию в 1802-1810 гг. Дж. Дальтоном атомной теории и открытию закона кратных отношений, устанавливающего закономерности образования хим. соединений. В 1811 г. Авогадро (A. Avogadro) ввел понятие «молекула», связывающее атомную теорию строения вещества с законами идеальных газов. Логическим завершением формирования атомистических взглядов на природу материи явилось открытие Д. И. Менделеевым в 1869 г. периодического закона хим. элементов (см. Периодическая система химических элементов).

Современное представление о строении атома сложилось в начале

20 в. Наиболее важными вехами на этом пути являются экспериментальное открытие электрона и установление его заряда, создание квантовой теории (см.) Планком (М. Plank) в 1900 г., работы Бора (N. Bohr, 1913), предположившего существование у атома электронной оболочки и создавшего его планетарную модель, и другие исследования, послужившие подтверждением квантовой теории строения атома. Завершающим этапом формирования современных представлений о строении атома явилась разработка квантовой (волновой) механики, с помощью методов к-рой в последующем удалось объяснить природу и направленность хим. связей, теоретически рассчитать физ.-хим. константы простейших молекул, развить теорию межмолекулярных сил и др.

Первоначальное развитие хим. термодинамики, изучающей законы взаимных превращений различных форм энергии в равновесных системах, связано с исследованиями Карно (S. Carnot) в 1824 г. Дальнейшие работы Майера (R. Mayer), Джоуля (J. Joule) и Г. Гельмгольца привели к открытию закона сохранения энергии - так наз. первого начала, или первого закона термодинамики. Введение Клаузиусом (R. Clausius) в 1865 г. понятия «энтропия» как меры свободной энергии, привело к разработке второго закона термодинамики. Третий основной закон термодинамики был выведен из тепловой теоремы Нернста об асимптотическом сближении свободной энергии и теплосодержания системы, в 1907 г. Эйнштейн (A. Einstein) составил уравнение теплоемкости простых гармонических осцилляторов, а в

1911 г. Планком был сделан вывод: энтропия чистых веществ при абсолютном нуле равна нулю.

Начало самостоятельному существованию термохимии - науки о тепловых эффектах хим. реакций, было положено трудами Г. И. Гесса, установившего в 1840 г. закон постоянства сумм теплоты. Большое значение для развития термохимии имели труды Бертло (Р. E. М. Berthelot), к-рый разработал калориметрические методы анализа (см. Калориметрия) и открыл принцип максимальной работы. В 1859 г. Кирхгоф (H. Kirch-hoff) сформулировал закон, связывающий тепловой эффект реакции с теплоемкостями реагирующих веществ и продуктов реакции. В 1909-

1912 гг. Нернст (W. H. Nernst), Эйнштейн и Дебай (P. Debye) разработали теорию квантовой теплоемкости.

Развитие электрохимии, занимающейся изучениехМ связи между химическими и электрическими явлениями и исследованием действия электрического тока на различные вещества в р-рах, связано с созданием Вольтой (A. Volta) в 1792-1794 гг. гальванического элемента. В 1800 г. появились первые работы Никольсо-на (V. Nicolson) и Карлейля (А. Каг-leil) по разложению воды, а в 1803- 1807 гг. работы И. Берцелиуса и Ги-зингера (W. Hisinger) об электролизе (см.) р-ров солей. В 1833-1834 гг. Фарадей (М. Faraday) сформулировал основные законы электролиза, связывающие выход электрохим. реакций с количеством электричества и хим. эквивалентами веществ. В 1853-1859 гг. Гитторф (J. W. Hittorf) установил зависимость между электрохим. действием и подвижностью ионов, а в 1879 г. Кольрауш (F. W. Kohlrausch) открыл закон независимого движения ионов (см.) и установил связь между эквивалентной электропроводностью и подвижностью катионов и анионов. В 1875 - 1878 гг. Гиббс (J. VV. Gibbs) и в 1882 г. Г. Гельмгольц разработали математическую модель, связывающую электродвижущую силу гальванического элемента с внутренней энергией хим. реакций. В 1879 г. Г. Гельмгольц создал учение о двойном электрическом слое. В 1930-1932 гг. Фольмер (М. Vol-mer) и А. Н. Фрумкин предложили количественную теорию электродных процессов.

Начало учению о растворах было положено работами Гассенфратца (J. H. Hassenfratz, 1798) и Ж. Гей-Люссака (1819) о растворимости солей. В 1881 -1884 гг. Д. П. Коновалов заложил научные основы теории и практики перегонки р-ров, а в 1882 г. Рауль (F. М. Raoult) открыл закон понижения температуры замерзания растворов (см. Криометрия). Первые количественные измерения осмотического давления (см.) были произведены в 1877 г. Пфеффером (W. F. Ph. Pfeffer), а в 1887 г. Я. Вант-Гофф создал термодинамическую теорию разбавленных р-ров и вывел уравнение, связывающее осмотическое давление с концентрацией р-ра, его объемом и абсолютной температурой. С. Аррениус в 1887 г. сформулировал теорию электролитической диссоциации и ионизации солей в р-рах (см. Электролиты), а Нернст в 1888 г.- осмотическую теорию. Оствальд (W. Ostwald) обнаружил закономерности, связывающие степень диссоциации электролита с его концентрацией. В 1911 г. Доннан (F. G. Don-пап) создал теорию распределения электролитов по обе стороны полупроницаемой мембраны (см. Мембранное равновесие), к-рая нашла широкое применение в биофизической химии (см.) и коллоидной химии (см.). В 1923 г. Дебай и Гюккель (E. Huckel) разработали статистическую теорию сильных электролитов.

Развитие учения о кинетике хим. реакций, равновесии и катализе началось с работ Вильгельми (L. Wil-helmy), создавшего в 1850 г. первую количественную теорию хим. реакций, и Вильямсона (A. W. Williamson), представившего равновесие как состояние равенства скоростей прямой и обратной реакций. Понятие «катализ» было введено в физическую хихмию И. Берцелиусом в

1835 г. Основные принципы учения

о хим. равновесии были сформулированы в трудах Бертолле (С. L. Вег-thollet). Начало динамической теории равновесий положено работами Вильямсона и Клаузиуса, принцип подвижного равновесия разработан Я. В ант-Гоффом, Гиббсом и Ле Ша-телье (H. Le Chatelier). Бертло и Пеан-сен-Жиль (L. Pean-saint-Gilles) установили связь между скоростью реакции и состоянием равновесия. Основной закон хим. кинетики о пропорциональности скорости реакции произведению активных масс (т. е. концентраций) реагирующих веществ - закон действующих масс - был сформулирован в 1864-1867 гг. Гульдбергом (С. М. Guldberg) и Ваа-ге (P. Waage). В 1893-1897 гг. А. Н. Бах и Энглер (К. Engler) создали перекисную теорию медленного окисления (см. Перекиси), в 1899- 1904 гг. Абегг (R. Abegg) и Бодлендер (H. Bodlander) развили представление о валентности как способности атома принимать или отдавать электроны, в 1913-1914 гг. Л. В. Писар-жевский и С. В. Дайн разработали электронную теорию окислительно-восстановительных реакций (см.). В 1903-1905 гг. Н. А. Шилов предложил теорию сопряженных реакций, а в 1913 г. Боденштейн (М. Во-denstein) открыл цепные реакции (см.), теоретические основы протекания к-рых были разработаны в 1926 -1932 гг. H. Н. Семеновым и Хиншелвудом (С. N. Hinsheiwood).

Явление радиоактивного распада атомов (радиоактивности) было открыто в 1896 г. А. Беккерелем. С тех пор изучению радиоактивности (см.) уделяется большое внимание и в этой области достигнуты существенные успехи, начиная с искусственного расщепления атомов и кончая разработками по управляемому термоядерному синтезу. Среди проблем Ф. х. необходимо выделить изучение влияния на молекулы гамма-излучений (см.), потока частиц высоких энергий (см. Альфа-излучение, Ясс-мическое излучение, Нейтронное излучение, Лротонное излучение), лазерного излучения (см. Лазер), а также изучение реакций в электрических разрядах и низкотемпературной плазме (плазмохимия). Успешно развивается физ.-хим. механика, исследующая влияние поверхностных явлений на свойства твердых тел.

Один из разделов Ф. х.- фотохимия (см.), изучает реакции, протекающие при поглощении веществом световой энергии от внешнего источника излучения.

В Ф. х. нет такого раздела, к-рый бы не имел значения для медико-биол. дисциплин и в конечном счете для практической медицины (см. Биофизическая химия). Физ.-хим. методы позволяют изучать живую клетку и ткани in vivo, не подвергая их разрушению. Не меньшее значение для медицины имеют физ.-хим. теории и представления. Так, учение об осмотических свойствах р-ров оказалось чрезвычайно существенным для понимания водного обмена (см. Водно-солевой обмен) у человека в норме и при патологии. Создание теории электролитической диссоциации существенно повлияло на представление о биоэлектрических явлениях (см.) и положило начало ионной теории возбуждения (см.) и торможения (см.). Теория кислот, и оснований (см.) дала возможность объяснить постоянство внутренней среды организма и послужила основой для изучения кислотно-щелочного равновесия (см.). Для понимания энергетики жизненных процессов (напр., функционирования АТФ) широко используют исследования, осуществляемые с помощью методов хим. термодинамики. Развитие физ.-хим. представлений о поверхностных процессах (поверхностном натяжении, смачивании и др.) существенно для понимания реакций клеточного иммунитета (см.), распластывания клеток на неклеточных поверхностях, адгезии и др. Теория и методы хим. кинетики являются основой для изучения кинетики биологических, прежде всего ферментативных, процессов. Большую роль в понимании сущности биол. процессов играет изучение биолюминесценции, хемолюминесценции (см. Биохемилюминесценция), использование люминесцирующих антител (см. Иммунофлюоресценция), флюо-р охр омов (см.) и др. для изучения свойств тканевой и субклеточной локализации белков, нуклеиновых к-т и др. Физ.-хим. методы определения интенсивности основного обмена (см.) чрезвычайно важны при диагностировании многих заболеваний, в т. ч. эндокринных.

Необходимо отметить, что изучение физ.-хим. свойств биол. систем и процессов, протекающих в живом организме, дает возможность глубже заглянуть в суть и выявить специфику живой материи и этих явлений.

Основными исследовательскими центрами в области физической химии в СССР являются научно-исследовательские ин-ты АН СССР, ее филиалов и отделений, АН союзных республик: Физико-химический ин-т им. Л. Я. Карпова, Ин-т физической химии, Ин-т химической физики, Ин-т новых химических проблем, Ин-т органической и физической химии им. А. Е. Арбузова, Ин-т катализа, Ин-т химической кинетики и горения, Ин-т физической химии АН УССР и др., а также соответствующие кафедры в ун-тах.

Основными печатными органами, систематически публикующими статьи по Ф. х., являются: «Журнал физической химии», «Кинетика и катализ», «Журнал структурной химии», «Радиохимия», «Электрохимия». За рубежом статьи по Ф. х. печатаются в «Zeitschrift fiir physi-kalische Chemie», «Journal of Physical Chemistry», «Journal de chimie physique et de physico-chimie bio-logique».

Библиогр.: Бабко А. К. и др.

Физико-химические методы анализа, М., 1968; Киреев В. А. Курс физической химии, М., 1975; Мелвин-Хьюз

Э. А. Физическая химия, пер. с англ., т. 1 - 2, М., 1962; Николаев Л. А. Физическая химия, М., 1972; Развитие

физической химии в СССР, под ред. Я. И. Герасимова, М., 1967; Соло

вьев Ю. И. Очерки по истории физической химии, М., 1964; Физическая

химия, Современные проблемы, под ред. Я. М. Колотыркина, М., 1980.

Периодические издания - Журнал структурной химии, М., с 1960; Журнал физической химии, М., с 1930; Кинетика и катализ, М., с 1960; Радиохимия, М.- Л., с 1959; Электрохимия, М., с 1965; Journal de chimie physique et de physico-chimie biologique, P., с 1903; Journal of Physical Chemistry, Baltimore, с 1896; Zeitschrift fiir physikalische Chemie, Lpz., с 1887.

ФИЗИЧЕСКАЯ ХИМИЯ

Предмет физической химии. Её значение

Взаимосвязь химических и физических явлений изучает физическая химия. Эта отрасль химии является пограничной между химией и физикой. Пользуясь теорети­ческими и экспериментальными методами обеих наук, а также своими собственными методами, физическая химия занимается многосторонним исследованием химических реакций и сопутствующих им физических процессов. Поскольку, однако, даже многостороннее исследование никогда не является полным и не охватывает явление исчерпывающим образом, постольку законы и закономерности физической химии, как и других естественных наук, всегда упрощают явление и не отражают его полностью.

Быстрое развитие и растущее значение физической химии связаны с её пограничным положением между физикой и химией. Основная общая задача физической химии – предсказание временнóго хода процесса и конечного результата (состояния равновесия) в различных условиях на основании данных о строении и свойствах веществ, составляющих изучаемую систему.

Краткий очерк истории развития физической химии

Термин «физическая химия» и определение этой науки впервые были даны М.В.Ломоносовым, который в 1752-1754 гг. читал студентам Академии наук курс физической химии и оставил рукопись этого курса «Введение в истинную физическую химию» (1752). Ломоносов выполнил многие исследования, темы которых соответствуют составленному им «Плану к курсу физической химии» (1752) и программе экспериментальных работ «Опыт физической химии» (1754). Под его руководством проводился также студенческий практикум по физической химии.

Ломоносов дал следующее определение физической химии: «Физическая химия есть наука, объясняющая на основании положений и опытов физики то, что происходит в смешанных телах при химических операциях». Это определение близко к современному.

Для развития физической химии огромное значение имело открытие двух законов термодинамики в середине XIX века (С.Карно, Ю.Р.Майер, Г.Гельмгольц, Д.П.Джоуль, Р.Клаузиус, В. Томсон).

Количество и разнообразие исследований, лежащих в области, пограничной между физикой и химией, постоянно возрастало в XIX веке. Было развито термодинамическое учение о химическом равновесии (К.М.Гульдберг, П.Вааге, Д.У.Гиббс). Исследования Л.Ф.Вильгельми положили начало изучению скоростей химических реакций (химическая кинетика). Исследовался перенос электричества в растворах (И.В.Гитторф, Ф.В.Г.Кольрауш), изучались законы равновесия растворов с паром (Д.П.Коновалов) и развивалась теория растворов (Д. И. Менделеев).

Признание физической химии как самостоятельной науки и учебной дисциплины выразилось в учреждении в Лейпцигском университете (Германия) в 1887 году первой кафедры физической химии во главе с В.Оствальдом и в основании там же первого научного журнала по физической химии. В конце XIX века Лейпцигский университет был центром развития физической химии, а ведущими физико-химиками являлись В.Оствальд, Я.Х.Вант-Гофф, С.Аррениус и В.Нернст. К этому времени определились три основных раздела физической химии – химическая термодинамика, химическая кинетика и электрохимия.

К важнейшим направлениям науки, развитие которых является необходимым условием технического прогресса, относится исследование химических процессов; физической химии принадлежит ведущая роль в развитии этой проблемы.

Разделы физической химии. Методы исследования

Химическая термодинамика. В этом разделе на основе законов общей термодинамики излагаются законы химического равновесия и учение о фазовых равновесиях.

Учение о растворах ставит своей целью объяснение и предсказание свойств растворов (гомогенных смесей нескольких веществ) на основании свойств веществ, составляющих раствор.

Учение о поверхностных явлениях. Изучаются разнообразные свойства поверхностных слоёв твёрдых тел и жидкостей (границы раздела между фазами); одно из основных изучаемых явлений в поверхностных слоях – это адсорбция (накопление вещества в поверхностном слое).

В системах, где поверхности раздела между жидкими, твёрдыми и газообразными фазами сильно развиты (эмульсии, туманы, дымы и т. д.), свойства поверхностных слоёв приобретают основное значение и определяют многие своеобразные свойства всей системы в целом. Такие дисперсные (микрогетерогенные) системы изучаются коллоидной химией, которая является крупным самостоятельным разделом физической химии.

Приведенный перечень основных разделов физической химии не охватывает некоторых областей и более мелких разделов этой науки, которые можно рассматривать как части более крупных разделов или как самостоятельные разделы физической химии. Следует ещё раз подчеркнуть тесную взаимосвязь различных разделов физической химии. При исследовании любого явления приходится использовать арсенал представлений, теорий и методов исследования многих разделов химии (а нередко и других наук). Лишь при начальном знакомстве с физической химией можно в учебных целях распределить материал по указанным разделам.

Методы физико-химического исследования . Основные методы физической химии, естественно, являются методами физики и химии. Это – прежде всего экспериментальный метод – исследование зависимости свойств веществ от внешних условий, экспериментальное изучение законов протекания различных процессов и законов химического равновесия.

Теоретическое осмысление экспериментальных данных и создание стройной системы знаний основано на методах теоретической физики.

Термодинамический метод, являющийся одним из них, позволяет количественно связывать различные свойства вещества («макроскопические» свойства) и рассчитывать одни из этих свойств на основании опытных величин других свойств.

ГЛАВА I.
ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

Теплота и работа

Изменения форм движения при переходе его от одного тела к другому и соответствующие превращения энергии весьма разнообразны. Формы же самого перехода движения и связанных с ним переходов энергии могут быть разбиты на две группы.

В первую группу входит только одна форма перехода движения путём хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота .

Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение макроскопических масс под действием каких-либо внешних сил, имеющих направленный характер. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и т.д. Общей мерой передаваемого такими способами движения является работа .

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от одной части материального мира к другой.

Передача движения есть своеобразное сложное движение материи, две основные формы которого мы различаем. Теплота и работа являются мерами этих двух сложных форм движения материи, и их следует рассматривать как виды энергии.

Общим свойством теплоты и работы является то, что они имеют значение только в течение отрезков времени, в которые протекают эти процессы. В ходе таких процессов в одних телах уменьшается движение в тех или иных формах и убывает соответствующая энергия, одновременно в других телах увеличивается движение в тех же или других формах и возрастают соответствующие виды энергии.

Мы не говорим о запасе теплоты или работы в каком-либо теле, а только о теплоте и работе известного процесса. После его окончания о наличии в телах теплоты или работы говорить не приходится.

Внутренняя энергия

Для некругового процесса равенство (I, 1) не соблюдается, так как система не возвращается в исходное состояние. Вместо этого равенства для некругового процесса можно записать (опуская коэффициент k ):

Так как пределы интегрирования в общем случае произвольны, то и для элементарных величин dW и dQ :

dQ ¹ dW ,

следовательно:

dQ – dW ¹ 0

Обозначим разность dQ – dW для любого элементарного термодинамического процесса через dU:

dU º dQ – dW (I, 2)

или для конечного процесса:

(I, 2а)

Возвращаясь к круговому процессу, получаем (из уравнения I, 1):

= – = 0 (I, 3)

Таким образом, величина dU является полным дифференциалом некоторой функции состояния системы. При возвращении системы к исходному состоянию (после циклического изменения) величина этой функции приобретает первоначальное значение.

Функция состояния системы U, определяемая равенствами (I, 2) или (I, 2а), называется внутренней энергией системы .

Очевидно, выражение (I, 2а) может быть записано следующим образом:

= U 2 – U 1 = ∆U = – (I, 2б)

U 2 U 1 = ∆U = Q – W

Данное рассуждение обосновывает опытным путем наличие определенной функции состояния системы, имеющей смысл суммарной меры всех движений, которыми система обладает.

Иначе говоря, внутренняя энергия включает поступательную и вращательную энергию молекул, колебательную энергию атомов и групп атомов в молекуле, энергию движения электронов, внутриядерную и другие виды энергии, т. е. совокупность всех видов энергии частиц в системе за исключением потенциальной и кинетической энергии самой системы.

Предположим, что циклический процесс удалось провести так, что после того, как система вернулась к исходному состоянию, внутренняя энергия системы не приняла начального значения, а увеличилась. В этом случае повторение круговых процессов вызвало бы накопление энергии в системе. Создалась бы возможность превращения этой энергии в работу и получения таким путем работы не за счёт теплоты, а «из ничего», так как в круговом процессе работа и теплота эквивалентны друг другу, что показано прямыми опытами.

Невозможность осуществления указанного цикла построения вечного двигателя (перпетуум мобиле) первого рода, дающего работу без затраты эквивалентного количества другого вида энергии, доказана отрицательным результатом тысячелетнего опыта человечества. Этот результат приводит к тому же выводу, который в частной, но более строгой форме мы получили, анализируя опыты Джоуля.

Сформулируем ещё раз полученный результат. Полный запас энергии системы (её внутренняя энергия) в результате циклического процесса возвращается к исходному значению, т. е. внутренняя энергия системы, находящейся в данном состоянии, имеет одно определенное значение и не зависит от того, каким изменениям система подвергалась перед тем, как прийти к данному состоянию.

Иными словами, внутренняя энергия системы есть однозначная, непрерывная и конечная функция состояния системы.

Изменение внутренней энергии системы определяется выражением (I, 2б); для кругового процесса справедливо выражение (I, 3). При бесконечно малом изменении некоторых свойств (параметров) системы внутренняя энергия системы изменяется также бесконечно мало. Это – свойство непрерывной функции.

В пределах термодинамики нет необходимости использовать общее определение понятия внутренней энергии. Формальное количественное определение через выражения (I, 2) или (I, 2а) достаточно для всех дальнейших термодинамических рассуждений и выводов.

Так как внутренняя энергия системы есть функция её состояния, то, как уже было сказано, прирост внутренней энергии при бесконечно малых изменениях параметров состояний системы есть полный дифференциал функции состояния. Разбивая интеграл в уравнении (I, 3) на два интеграла по участкам пути от состояния 1 до состояния 2 (путь «а») (см. рис. I) и обратно – от состояния 2 до состояния 1 (иной путь «b»), – получаем:

(I, 4)

(I, 5)

К тому же результату мы придем, сравнивая пути «а»и«с»или «b»и «с» и т. д.

Рис. I. Схема кругового (циклического) процесса.

Выражение (I, 5) показывает, что приращение внутренней энергии системы при переходе её из одного состояния в другое не зависит от пути процесса, а зависит только от начального и конечного состояния системы.

Первое начало термодинамики

Первое начало термодинамики непосредственно связано с законом сохранения энергии. Оно позволяет рассчитывать баланс энергии при протекании различных процессов, в том числе и химических реакций.

Из закона сохранения энергии следует:

Q = ∆U + W

Полученное выражение для закрытой системы может быть прочитано следующим образом: теплота, подведенная к системе, расходуется только на изменение её внутренней энергии и совершение работы.

Приведенное выше утверждение, связанное с уравнениями (I, 3) и (I, 5), служит формулировкой первого начала термодинамики (в сочетании с уравнением (I, 2), дающим количественное определение внутренней энергии).

Первое начало термодинамики является количественной формулировкой закона сохранения энергии в применении к процессам, связанным с превращениями теплоты и работы.

Еще одна формулировка первого начала термодинамики может быть получена из выражения (I, 2а). В изолированной системе dQ = 0 и dW = 0 , тогда и dU = 0 ; следовательно, при любых процессах, протекающих в изолированной системе:

(I,6)

т. е. внутренняя энергия изолированной системы постоянна . Эта формулировка первого закона термодинамики есть примененное к конкретным условиям и конечным системам количественное выражение общего закона сохранения энергии, в соответствии с которым энергия не создается и не исчезает.

Следует отметить, что первый закон термодинамики не дает возможности найти полное значение внутренней энергии системы в каком-либо состоянии, так как уравнения, выражающие первый закон, приводят к вычислению только изменения энергии системы в различных процессах. Точно так же нельзя непосредственно измерить изменение внутренней энергии в макроскопических процессах; можно лишь вычислить это изменение с помощью уравнения (I, 2б), учитывая измеримые величины – теплоту и работу данного процесса.

Отметим, что теплота и работа (каждая в отдельности) не обладают свойством функции состояния, выражаемым уравнением (I, 3) или (I, 5) и присущим внутренней энергии. Теплота и работа процесса, переводящего систему из состояния 1 в состояние 2, зависят в общем случае от пути процесса и величины δQ и δW не являются дифференциалами функции состояния, а суть просто бесконечно малые величины, которые мы будем называть элементарной теплотой и элементарной работой.

Таким образом, дифференциал внутренней энергии dU имеет иные математические свойства, чем элементарные теплота dQ и работа dW . Это имеет существенное значение при построении системы термодинамики.

Уравнения состояния

Многие свойства системы, находящейся в равновесии, и составляющих её фаз являются взаимозависимыми. Изменение одного из них вызывает изменение других. Количественные функциональные зависимости между свойствами системы (фазы) могут быть отражены уравнениями различного вида.

Из таких уравнений наибольшее значение имеет уравнение состояния фазы, связывающее в интегральной форме давление, температуру, плотность (или объём), состав и другие свойства каждой фазы системы, находящейся в равновесии.

Уравнение состояния тесно связано с термодинамическими уравнениями системы и ее однородных частей (фаз), но не может быть в конкретной форме выведено из основных уравнений термодинамики и должно быть найдено опытным путем или получено методами статистической физики, исходя из молекулярных параметров (т. е. величин, характеризующих строение и свойства отдельных молекул). Простейшими уравнениями состояния являются уравнения для газов при малых давлениях: уравнение Клапейрона – Менделеева, уравнение Ван-дер-Ваальса и др.

Наличие уравнений состояния и других уравнений, связывающих различные свойства фазы, приводит к тому, что для однозначной характеристики состояния системы оказывается достаточным знание только нескольких, немногих независимых свойств. Эти свойства называются независимыми переменными или параметрами состояния системы. Остальные свойства являются функциями параметров состояния и определяются однозначно, если заданы значения последних. При этом для многих задач не имеет значения, известны ли нам конкретные уравнения состояния исследуемых фаз; важно только, что соответствующие зависимости всегда реально существуют.

Таким образом, состояние системы определяется независимыми переменными (параметрами состояния), число которых зависит от характера конкретной системы, а выбор их в принципе произволен и связан с соображениями целесообразности. Для определения состояния простейших систем – однородных и постоянных во времени по массе и составу (состоящих из одной фазы и не изменяющихся химически) – достаточно знать две независимые переменные из числа трех (объём V, давление P и температура T). В более сложных системах в число независимых переменных могут входить концентрации, электрический заряд, электростатический потенциал, напряженность магнитного поля и другие.

Калорические коэффициенты

Внутренняя энергия системы, будучи функцией состояния, является функцией независимых переменных (параметров состояния) системы.

В простейших системах

U = f (V, T ) (I, 7)

откуда полный дифференциал U:

dU = dV + dT (1,8)

Подставив значение dU из уравнения (I, 8) в уравнение (I, 2), находим:

δQ = dV + dT + δW (I, 9)

Если в изучаемой системе имеет место только работа расширения и отсутствуют работы электрическая, силы тяготения, поверхностных сил и т. д., то dW = PdV. Тогда

δQ = + P dV + dT (I, 9а)

Обозначив коэффициенты при дифференциалах независимых переменных в уравнении (I, 9а) символами l и C V , получим:

δQ = ldV + C V dT (1,10)

Из уравнений (I, 9а) и (I, 10) следует:

= l = + P (I,11)

= C V =

Величины и не представляют собой производных какой-либо функции. Первая из них является теплотой изотермического расширения тела. Эта величина, размерность которой совпадает с размерностью давления, складывается из внешнего давления и члена ; который отражает взаимное притяжение молекул. Этот член мал для реальных газов и очень велик (по сравнению с обычными значениями внешнего давления) для жидкостей и твердых тел.

Величина C V , в соответствии с уравнением (I, 11), есть теплоемкость при постоянном объёме . Теплота, полглощаемая системой при постоянном объёме, затрачивается полностью на увеличение внутренней энергии (при условии отсутствия всех видов работы, в том числе работы расширения).

Коэффициенты полного дифференциала внутренней энергии при переменных V и Т имеют простой физический смысл, как показано выше.

Выбрав в качестве независимых переменных P и Т или V и P и считая внутреннюю энергию функцией этих пар переменных, можно аналогично изложенному получить:

dQ = hdP + C P dT (I, 10а)

dQ = cdV + ldp (I, 10б)

где величины h, C P , c и l связаны с производными внутренней энергии более сложными соотношениями, чем представленные в уравнении (I, 11). Отметим, что C p = есть теплоемкость при постоянном давлении, а h = – теплота изотермического возрастания давления. Последняя величина существенно отрицательна.

Коэффициенты l , h, C V , C P , cи λ называются калорическими коэффициентами. Имея самостоятельный физический смысл (особенно C P , C V и l ), они являются также полезными вспомогательными величинами при термодинамических выводах и расчетах.

Работа различных процессов

Под названием работы объединяются многие энергетические процессы; общим свойством этих процессов является затрата энергии системы на преодоление силы, действующей извне. К таким процессам относится, например, перемещение масс в потенциальном поле. Если движение происходит против градиента силы, то система затрачивает энергию в форме работы; величина работы положительна. При движении по градиенту силы система получает энергию в форме работы извне; величина работы отрицательна. Такова работа поднятия известной массы в поле тяготения. Элементарная работа в этом случае:

dW = – mgdH

где m – масса тела; H – высота над начальным нулевым уровнем. При расширении системы, на которую действует внешнее давление P, система совершает работу , элементарная работа равна в этом случае PdV (V 1 и V 2 – начальный и конечный объёмы системы соответственно).

При движении электрического заряда q в электрическом поле против направления падения потенциала j и на участке, где изменение потенциала равно dj, а также при увеличении заряда тела, имеющего потенциал j , на величину dq работа совершается над системой, величина ее равна в первом случае – qdj , а во втором случае – jdq .

Аналогичным образом можно выразить работу увеличения поверхности раздела S между однородными частями системы (фазами): dW = -sdS ,
где s – поверхностное натяжение.

В общем случае элементарная работа dW является суммой нескольких качественно различных элементарных работ:

dW = Pd V – mgdH – sdS – jd q + … (1,12)

Здесь P, -mg, - σ, -j – силы в обобщенном смысле (обобщенные силы) или факторы интенсивности; V, H, S , q обобщенные координаты или факторы емкости.

В каждом конкретном случае следует определить, какие виды работы возможны в исследуемой системе, и, составив соответствующие выражения для dW , использовать их в уравнении (I, 2а). Интегрирование уравнения (I, 12) и подсчет работы для конкретного процесса возможны только в тех случаях, когда процесс равновесен и известно уравнение состояния.

Для очень многих систем можно ограничить ряд уравнения (I, 12) одним членом – работой расширения.

Работа расширения при равновесных процессах выражается различными уравнениями, вытекающими из уравнения состояния. Приведем некоторые из них:

1) Процесс, протекающий при постоянном объёме (изохорный процесс; V = const ):

W = ∫δW = ∫PdV = 0 (I, 13)

2) Процесс, протекающий при постоянном давлении (изобарный процесс; P = const ):

W = = P(V 2 – V 1) = PDV (I, 14)

3) Процесс, протекающий при постоянной температуре (изотермический процесс, T = const ). Работа расширения идеального газа, для которого PV = nRT:

W = dV = nRT ln (I, 15)

Энтальпия

Уравнение первого закона термодинамики для процессов, где совершается только работа расширения, приобретает вид:

δQ = dU + PdV (I, 19)

Если процесс идет при постоянном давлении, то, интегрируя, получаем:

Q P = U 2 – U 1 + P(V 2 – V 1) (I, 20)

Q P = (U 2 + PV 2) – (U 1 + PV 1) (I, 21)

Так как P и V – параметры состояния, a U – функция состояния, то сумма U + PV такжеявляется функцией состояния и ее изменение в процессе не зависит от пути процесса, а лишь от начального и конечного состояний. Эта функция называется энтальпией и обозначается символом H . Определением величины H служит тождество:

H U + PV (I, 22)

Из уравнения (I, 21) следует, что теплота, поглощаемая при постоянном давлении, равна приросту энтальпии DH и не зависит от пути процесса:

(I,21а)

Второй закон термодинамики

Наиболее часто встречающимися и безусловно самопроизвольными являются процессы передачи теплоты от горячего тела к холодному (теплопроводность) и перехода работы в теплоту (трение). Многовековая житейская, техническая и научная практика человечества показали повседневную реальность этих процессов, а также невозможность самопроизвольного протекания обратных процессов, очень заманчивых с практической точки зрения (получение работы за счет отнятия теплоты у тел, окружающих рабочее тело). Это дает основание утверждать, что единственным результатом любой совокупности процессов не может быть переход теплоты от менее нагретого тела к более нагретому (постулат Клаузиуса).

Обратный указанному переход теплоты от более нагретого тела к менее нагретому – это обычный неравновесный процесс передачи теплоты путем теплопроводности. Он не может быть обращен, т. е. проведен в обратном направлении через ту же последовательность состояний. Но этого мало: если в системе прошел процесс прямой передачи теплоты, то никаким образом нельзя осуществить такую последовательность любых процессов, в результате которой все тела, участвовавшие в передаче теплоты, пришли бы в исходное состояние и не произошло бы никаких изменений в других телах. Процесс теплопроводности необратим.

Другое общее положение, имеющее ту же опытную основу, утверждает следующее: единственным результатом любой совокупности процессов не может быть превращение теплоты в работу (т. е. поглощение системой теплоты из окружающей среды и отдача эквивалентной этой теплоте работы). Таким образом, самопроизвольный процесс превращения работы в теплоту (путем трения) необратим (так же, как и теплопроводность).

Последнее утверждение может быть изложено иначе: теплота наиболее холодного из участвующих в процессе тел не может служить источником работы (постулат Томсона).

Оба положения (постулаты Клаузиуса и Томсона) являются формулировками второго закона термодинамики и эквивалентны друг другу, т. е. каждое из них может быть доказано на основании другого.

Так как переход теплоты или её превращение в работу рассматривается как единственный результат процесса, то очевидно необходимо, чтобы система, участвующая в теплообмене, возвращалась в результате процесса или совокупности процессов в первоначальное состояние. При таком циклическом процессе внутренняя энергия системы не изменится.

Предположим, что вторая из приведенных выше формулировок (особенно в последней ее форме) неправильна. Тогда можно было бы построить машину, работающую циклами, «рабочее тело» которой периодически возвращалось бы в исходное состояние, причем эта машина давала бы работу за счёт теплоты, поглощаемой извне от тела, не более нагретого, чем сама система и все другие окружающие систему тела. Такой процесс протекал бы без нарушения первого закона термодинамики (работа за счет теплоты), но для практики он равноценен получению работы из ничего, так как всякая машина имела бы практически неисчерпаемый источник теплоты в окружающей среде. Так пароход мог бы двигаться, отнимая теплоту океанской воды и не нуждаясь в топливе. Такая машина называется перпетуум мобиле (вечный двигатель) второго рода. Исходя из этого определения, можно сформулировать второй закон термодинамики, придав постулату Томсона иную форму: перпетуум мобиле второго рода невозможен.

Следует подчеркнуть, что как положения Клаузиуса и Томсона, так и утверждение о невозможности перпетуум мобиле второго рода не доказываются на основании других законов или положений. Они являются предположениями, которые оправдываются всеми следствиями, из них вытекающими, но не могут быть доказаны для всех возможных случаев.

Приведем еще одну формулировку второго закона термодинамики, являющуюся, безусловно, достаточно точной и краткой. В этой формулировке содержится постулат о существовании новой функции состояния, через которую выражается различие между обратимыми и необратимыми процессами:

Методы расчета энтропии

Уравнения (II, 1) и (II, 1а), определяющие энтропию, являются единственными исходными уравнениями для термодинамического расчета изменения энтропии системы. Заменяя элементарную теплоту в уравнении (II, 1а) ее выражениями через калорические коэффициенты (см. уравнения (I, 10) и (I, 10а)), получаем для равновесных процессов:

КДж/моль; температура плавления t пл. = 5,5°С (Т = 278,5 К ). Следовательно, изменение энтропии 1 моль бензола при плавлении (энтропия плавления) равно:

DS пл. = 35,06 Дж/моль

2. Нагревание при постоянном давлении (изобарный процесс; P = const ). Из уравнений (I, 18а) и (II, 1а)получаем:

DS = (II, 6)

Найдем изменение энтропии одного моля алюминия при нагревании от 25 до 600°С. Истинная мольная теплоемкость алюминия может быть выражена уравнением:

С р = 565,5 + 0,290 Т. По уравнению (II, 6) изменение энтропии будет равно:

DS = = 565,5 + 0,290(873 – 298) = 607,8 + 166,8 = 774,6 Дж/мольK

Постулат Планка. Абсолютные значения энтропии

По уравнению (II, 3) невозможно вычислить абсолютное значение энтропии системы. Такую возможность дает новое, недоказуемое положение, не вытекающее из двух законов термодинамики, которое было сформулировано М.Планком (1912). Согласно этому положению, называемому постулатом Планка , энтропия индивидуального кристаллического вещества при абсолютном нуле равна нулю :

Строго говоря, постулат Планка справедлив только для индивидуальных веществ, кристаллы которых идеально построены (в кристаллической решетке все узлы заняты молекулами или атомами, правильно чередующимися и закономерно ориентированными). Такие кристаллы называются идеальными твердыми телами. Реальные кристаллы не являются таковыми, так как их кристаллическая решетка построена не идеально.

Энтропия кристаллической решетки, построенной в некоторой степени беспорядочно, больше энтропии идеально построенной кристаллической решётки. Поэтому реальные кристаллы и при 0 К обладают энтропией, большей нуля. Однако энтропии реальных хорошо образованных кристаллов индивидуальных веществ при абсолютном нуле невелики.

В соответствии с постулатом Планка уравнение (II, 6) для идеального твёрдого тела примет вид:

Постулат Планка используется при термодинамическом исследовании химических процессов для вычисления абсолютных значений энтропии химических соединений – величин, которые имеют большое значение при расчете химических равновесий.

Энтропия широко используется в технической термодинамике (теплотехнике), как один из важных параметров рабочего тела в тепловой машине, например, водяного пара. Величины энтропии водяного пара в данном состоянии вычисляются по сравнению с некоторым стандартным состоянием – обычно 0°С и 1 amм. Эти значения энтропии используются для построения так называемых энтропийных диаграмм состояния водяного пара в координатах S-Т или S-H (диаграмма Молье). В таких диаграммах подобно диаграммам V-P можно изображать различные процессы, протекающие в рабочем теле тепловой машины и составляющие рабочие циклы машины.

В заключение следует отметить, что нам не придется углубляться в область термодинамики. Наша цель лишь проиллюстрировать основные идеи этой науки и объяснить причины, по которым возможно основываться на её аргументах.

Наконец, два закона термодинамики часто формулируют так:

Первый закон: Энергия Вселенной всегда постоянна.

Второй закон: Энтропия Вселенной всегда возрастает.

Министерство образования Российской Федерации Томский политехнический университет __________________________________________________________________________ Н. А. Колпакова, В. А. Колпаков, С. В. Романенко ФИЗИЧЕСКАЯ ХИМИЯ Учебное пособие Часть I Томск 2004 УДК 541.1 Физическая химия. Учебное пособие / Н. А. Колпакова, В. А. Колпаков, С.В. Романенко. – Томск: Изд. ТПУ, 2004. - Ч. 1. - 168 с. В учебном пособии рассмотрены следующие разделы «Физической хи- мии»: основные законы термодинамики, химическое и фазовое равновесие, термодинамика растворов неэлектролитов. Пособие подготовлено на кафедре физической и аналитической химии ТПУ и предназначено для студентов за- очного обучения химических специальностей. Печатается по постановлению Редакционно-издательского Совета Том- ского политехнического университета Рецензенты: Курина Л.Н. – Проф. каф.ФХ ТГУ, доктор хим. наук; Буйновский А.С. – Зав. каф. Химии ТПУ СТУ, доктор хим. наук. © Томский политехнический университет, 2004 © Авторы, 2004 Г Л АВ А 1 . ВВЕДЕНИЕ В ФИЗИЧЕСКУЮ ХИМИЮ 1.1. КРАТКИЙ ИСТОРИЧЕСКИЙ ОЧЕРК РАЗВИТИЯ ФИЗИЧЕСКОЙ ХИМИИ Название и определение содержания физической химии впервые дано М. В. Ломоносовым (1752): «Физическая химия это наука, которая должна на основании положений и опытов физических объяснить причину того, что происходит через химические операции в сложных телах». Преподавание в России физической химии как самостоятельной науки ввел проф. Н. Н. Бекетов в 1860 г. в Харьковском университете. Важнейшие теоретические и экспериментальные исследования Ломоно- сова привели его к открытиям, которые и сейчас не потеряли своего значе- ния. Ломоносов близко подошел к правильному определению принципа со- хранения материи и движения, кинетической природе теплоты, а также отме- тил невозможность самопроизвольного перехода теплоты от более холодного тела к более теплому, что является в настоящее время одной из формулиро- вок второго начала термодинамики. В течение последующего столетия про- водились исследования, на основе которых было сделано много важных от- крытий и обобщений. К. В. Шееле в Швеции (1773) и Фонтана во Франции (1777) открыли адсорбцию газов; Т. Е. Ловиц в России (1785) открыл адсорб- цию из растворов. А. Л. Лавуазье и П. С. Лаплас во Франции (1779–1784) изучали теплоемкости веществ и тепловые эффекты реакций. В начале XIX в. Г. Дэви в Англии и Л. Ж. Тенаром во Франции были открыты каталитические реакции, а Й. Я. Берцелиус в Швеции (1835) развил далее представления о катализе. Основы электрохимии были заложены исследованиями по гальваниче- ским элементам, электролизу и переносу тока в электролитах. Гальвани и А. Вольта в Италии создали в 1799 г. гальванический элемент. В. В. Петров в России (1802) открыл явление электрической дуги. Т. Гротгус в России в (1805) заложил основы теории электролиза. В 1800 г. Г. Дэви выдвинул элек- трохимическую теорию взаимодействия веществ: он широко применил элек- тролиз для химических исследований. М. Фарадей, ученик Дэви, в 1833– 1834 гг. сформулировал количественные законы электролиза. Б. С. Якоби в России, решая вопросы практического использования процесса электролиза, открыл в 1836 г. гальванопластику. В первой половине XIX в. благодаря трудам Д. Дальтона в Англии (1801–1803), Ж. Л. Гей-Люссака во Франции (1802) и А. Авогадро в Италии (1811), открывших важнейшие законы газообразного состояния, получили 3 широкое развитие атомистические представления. К этому же периоду отно- сятся работы Г. И. Гесса (1802–1856) по термохимии. К. Гульдберг и П. Вааге в Норвегии (1864–1867), Дж. У. Гиббс в США (1873–1878) развили термодинамическое учение о химическом равновесии, а А. Л. Ле Шателье во Франции (1884) открыл общий принцип смещения рав- новесия при изменении внешних условий. В работах голландского химика Я. Х. Вант-Гоффа получила развитие термодинамическая теория химического равновесия. Он же разработал количественную теорию разбавленных раство- ров (1885–1889). Перенос электричества в растворах исследовали в Германии И. В. Гитторф и Ф. В. Г. Кольрауш. Шведский ученый С. А. Аррениус развил в 1883–1887 гг. теорию электролитической диссоциации. Глубокий след в развитии физической химии оставил А. М. Бутлеров, создавший теорию строения органических соединений. Великий русский химик Д. И. Менделеев (1834–1907) открыл существо- вание критической температуры (1860), вывел общее уравнение состояния газов, (1874) и разработал химическую теорию растворов (1887). Д. П. Коновалов (1889), ученик Менделеева, является одним из основопо- ложников теории растворов. В конце XIX в. был сделан ряд крупных открытий в области учения о строении вещества, которые доказали сложность строения атома и сыграли огромную роль в развитии физической химии. К ним относятся открытия электрона Ж. Б. Перреном (1895) и Дж. Томсоном (1897), квантовой природы света Р. Планком (1900), существования светового давления П. Н. Лебедевым (1899), изучение (начиная с 1898 г.) явлений радиоактивности П. Кюри и М. Склодовской-Кюри. К началу XX в. физическая химия определялась как наука, изучающая строение вещества, химическую термодинамику, включая термохимию и учение о равновесии, растворы, химическую кинетику и электрохимию. Были применены новые теоретические методы и на первый план выступили иссле- дования строения атомов, молекул и кристаллов. Наиболее бурно в XX столетии развивалось учение о строении вещества, в особенности о строении атомов и молекул. Крупным достижением в этой области была ядерная теория атома, предложенная Э. Резерфордом (1911) и получившая развитие в первой количественной теории атома водорода, раз- работанной датским физиком Н. Бором (1913). Исследование природы химической связи и строения молекул развива- лось параллельно с изучением строения атома. К началу 20-х годов текущего столетия В. Коссель и Г. Н. Льюис разработали основы электронной теории химической связи. В. Г. Гайтлером и Ф. Лондоном (1927) была развита кван- тово-механическая теория химической связи. Основываясь на крупнейших открытиях физики в области строения атома и используя теоретические ме- тоды квантовой механики и статистической физики, а также новые экспери- 4 ментальные методы, такие, как рентгеновский анализ, спектроскопия, масс- спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физико-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи. Большое развитие получило учение о скоростях химических реакций, т. е. химическая кинетика, связываемая теперь конкретно с исследованиями строения молекул и прочности связей между атомами в молекуле. Возникли и успешно развиваются новые разделы физической химии: магнетохимия, ра- диационная химия, физическая химия высокополимеров, физическая химия силикатов, газовая электрохимия и др. Как и другие науки, физическая химия и отдельные ее разделы возника- ли или начинали развиваться особенно успешно в те периоды, когда та или иная практическая потребность вызывала необходимость быстрого развития какой-либо отрасли промышленности, а для этого развития требовалась прочная теоретическая основа. Здесь необходимо отметить крупные исследо- вания Н. С. Курнакова по физико-химическому анализу, работы в области электрохимии А. Н. Фрумкина, создание теории цепных реакций Н. Н. Семеновым, разработку теории гетерогенного катализа А. А. Баландиным. Физической химии принадлежит ведущая роль при реше- нии многочисленных проблем, стоящих перед химической наукой и практи- кой. В настоящее время физическая химия - самостоятельная дисциплина со своими методами исследования и является теоретической базой прикладных химико-технологических дисциплин. 1.2. ПРЕДМЕТ И ЗАДАЧИ ФИЗИЧЕСКОЙ ХИМИИ Физическая химия - наука о закономерностях химических процессов и физических явлений. Главной задачей физической химии является изучение и объяснение основных закономерностей, определяющих направленность хи- мических процессов, скорость их протекания, влияние среды, примесей, из- лучения, условия получения максимального выхода полезного продукта. Изучение физической химии дает возможность понять законы химии, а также предсказывать химические явления и управлять ими. Современная физиче- ская химия позволяет решить задачи эффективного управления производст- вом, интенсификации и автоматизации производственных процессов. Она служит теоретическим основанием химической технологии. Такие важней- шие производственные процессы в химической технологии, как синтез и окисление аммиака, контактное получение серной кислоты, получение этано- ла из природного газа, крекинг нефти и многие другие, основаны на резуль- татах физико-химического исследования реакций, лежащих в основе этих 5 процессов. Без физической химии нельзя решить проблему создания веществ с заданными свойствами, разработать новые источники тока и многие другие вопросы эффективного производства. Поэтому знание физической химии для будущих инженеров-технологов открывает большие возможности для реше- ния многообразных задач, встречающихся в практической деятельности ин- женера на заводах и в научно-исследовательских институтах. Название науки - «физическая химия» - отражает как историю воз- никновения ее на стыке двух наук - физики и химии, а также то, что она широко использует теоретические законы и экспериментальные методы фи- зики при исследовании химических явлений. 1.3. КЛАССИФИКАЦИЯ МЕТОДОВ ФИЗИЧЕСКОЙ ХИМИИ В физической химии применяется несколько теоретических методов.  Квантово-химический метод для описания химических превращений использует свойства элементарных частиц. С помощью законов кван- товой механики описывают свойства и реакционную способность мо- лекул, а также природу химической связи на основе свойств элемен- тарных частиц, входящих в состав молекул.  Термодинамический (феноменологический) метод базируется на не- скольких законах (постулатах), являющихся обобщением опытных данных. Он позволяет на их основе выяснить энергетические свойства системы, предсказать ход химического процесса и его результат к моменту равновесия.  Квантово-статистический метод объясняет свойства веществ на ос- нове свойств составляющих эти вещества молекул.  Кинетический метод позволяет установить механизм и создать тео- рию химических процессов путем изучения изменения скорости про- текания химических реакций от различных факторов. Для физической химии характерно широкое использование математики, которая не только дает возможность наиболее точно выразить теоретические закономерности, но и является необходимым инструментом их установления. 6 Г Л АВ А 2 . ОСНОВНЫЕ ЗАКОНЫ ТЕРМОДИНАМИКИ Слово «термодинамика» происходит от греческого therme - тепло и dynamis - сила. Термодинамика - наука о превращениях различных видов энергии из одного в другой. Химическая термодинамика изучает превращения различных видов энергии происходящих при протекании химических реакций. 2.1. ОСНОВНЫЕ ПОНЯТИЯ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ Системой называется отдельное тело или группа тел, находящихся во взаи- модействии и обособленных от окружающей среды реальной или вообра- жаемой оболочкой (границей). Открытой называется система, которая обменивается с внешней средой веществами (массой) и энергией (например, теплом). Изолированной систе- мой (или закрытой системой) называют такую систему, которая не обменива- ется теплотой и работой с окружающей средой. Энергия и объем изолиро- ванной системы постоянны во времени. Примером такой системы является, например, термос. Если граница не пропускает теплоту, то процесс, происхо- дящий в системе, называют адиабатическим. Когда система обменивается теплотой и работой с окружающей средой, происходят изменения как в сис- теме, так и в окружающей среде. Термодинамические системы могут быть гомогенными или гетероген- ными. Если внутри системы нет поверхностей раздела, отделяющих различ- ные по составу или строению части системы, то эта система называется гомо- генной. Соответственно, гетерогенной называется система, состоящая из раз- личных частей, различающихся по строению или химическому составу. Эти части называются фазами. Таким образом, фазой называется часть гетерогенной системы, ограничен- ная поверхностью раздела и характеризующаяся одинаковыми во всех точ- ках физическими и химическими свойствами. Каждая система состоит из одного или нескольких веществ. Индивидуальные химические вещества, которые могут быть выделены из системы и существовать вне ее самостоятельно в виде отдельной фазы, называются составляющими веществами системы. Например, в стакане находится вода, в которую опущена платиновая пластинка. Над стаканом имеется смесь газов: кислород, водород и азот. Данная система трехфазная, в ней находятся пять составляющих веществ. 7 Термодинамическое состояние системы это набор значений независимых переменных (параметров системы), которые определяют ее свойства. Любое свойство системы может быть названо термодинамическим параметром состояния, если оно рассматривается как одна из независимых переменных, определяющих состояние системы. Термодинамика рассматри- вает вещество как сплошную среду и использует для исследования такие термодинамические параметры, которые являются результатом действия большого количества частиц (макропараметры). Например, макропараметра- ми химической реакции, протекающей даже при «обычных условиях», явля- ются температура, давление, объем, концентрация, напряженность гравита- ционного, магнитного, электрического и электромагнитного полей и др. «Обычные условия» - это температура 20–25 °С, давление атмосферное, т.е. около 101 кПа, ускорение силы тяжести - в среднем около 9,8 м/с2, напря- женность магнитного поля - в среднем около 40 А/м, напряженность элек- трического поля - в среднем около 130 В/м, освещенность видимым светом - в среднем около 500 лк. Чтобы охарактеризовать термодинамическое состояние системы, необ- ходимо знать не все свойства, а лишь наименьшее их число, так называемые независимые параметры системы. Как правило, описывая химический про- цесс, протекающий на Земле, мы не указываем характеристики поля, так как они постоянные и потому не оказывают влияния на состав и выход продуктов реакции. Если же химический процесс проводится в условиях сильных маг- нитных или электрических полей, или при интенсивном облучении ультра- фиолетом, рентгеновскими лучами или даже видимым светом, то параметры поля окажут существенное влияние на состав и выход продуктов реакции. В этом случае параметры поля необходимо указывать. Термодинамические параметры делят на экстенсивные и интенсивные. Величины, пропорциональные массе (или количеству вещества) рассматри- ваемого рабочего тела или термодинамической системы, называются экстен- сивными, это - объем, внутренняя энергия, энтальпия и т. п. Интенсивные величины не зависят от массы термодинамической системы. Это, например, температура и давление. Давление - физическая величина, равная отношению силы, равномерно распределенной по поверхности тела, к площади поверхности, расположен- F ной перпендикулярно силе: p = S Единица давления в СИ - паскаль (Па) - это давление, вызываемое силой в 1 Н, равномерно распределенной по поверхности площадью 1 м2, расположенной перпендикулярно направлению силы: 1 Н/м2 = 1 Па. На прак- тике используются кратные и дольные единицы давления: килопаскаль 8 (103 Па = 1 кПа); мегапаскаль (106 Па = 1 Мпа); гектапаскаль (102 Па = 1 гПа), а также внесистемная единица - бар (1 бар = 105 Па). Согласно выводам молекулярно-кинетической теории, давление газа яв- ляется результатом ударов о стенку сосуда хаотически непрерывно движу- щихся молекул. Наиболее простые соотношения между параметрами и пове- дением молекул получены для идеального газа. Под идеальным газом пони- мают газ, состоящий из упругих молекул, между которыми нет сил взаимо- действия, обладающих пренебрежимо малым собственным объемом по срав- нению с объемом, занимаемым газом. Любой реальный газ при относительно низком давлении (близком к атмосферному) ведет себя практически как иде- альный (строго при p → 0). Уравнение состояния идеального газа - уравнение Менделеева - Кла- пейрона имеет вид: pV = nRT, где р - давление газа, Па; V - объем, м3; n - количество газа, моль; R - универсальная газовая постоянная равная 8,314 Дж/(моль К); T - абсолют- ная температура, К. Температура характеризует тепловое состояние системы. На опыте можно установить понятия более теплого и более холодного тела, но темпе- ратуру нельзя измерить непосредственно. Ее определяют по численным зна- чениям других физических параметров, зависящих от температуры, что и по- ложено в основу построения эмпирических температурных шкал. В качестве таких параметров (термометрических параметров) могут выступать различ- ные физические величины. В их числе объем тела при постоянном давлении, давление при постоянном объеме, электрическая проводимость, термоэлек- тродвижущая сила, геометрические параметры тел, яркость свечения и др. Устройство для измерения температуры называется термометром. Для построения любой эмпирической шкалы температур используют три допущения: 1) размер градуса задается выбором численного значения величины ∆T между двумя реперными температурными точками - эталонами температу- ры; 2) положение температурного нуля в эмпирических шкалах является произвольным; 3) принимается, что термометрическая функция линейна в данном ин- тервале температур. В качестве реперных точек используют фазовые переходы чистых ве- ществ. Например, для эмпирической шкалы Цельсия в качестве реперных то- чек приняты температуры плавления и кипения воды при атмосферном дав- 9 лении (0 и 100 градусов, соответственно). Интервал между этими температу- рами разделен на сто равных частей (градусов Цельсия - °С). Хотя объективную температурную шкалу можно построить при использовании лю- бой теоретически определенной термометрической функции, в термодинамике в качестве такой функции применяют уравнение состояния идеального газа. Газовый термометр по- зволяет проводить наиболее точные (близкие к абсолютной шкале температур - шкале Кельвина) измерения температуры. Однако определение температуры по шкале газового термометра представляет собой достаточно трудную работу, которую проводят только для установления абсолютных температур немногих реперных точек фазовых переходов, принимаемых за эталонные. Промежуточные температуры обычно определяют эмпириче- скими термометрическими методами. Международная практическая шкала температур (МПШТ), принятая в 1954 г., - это наиболее точное на современном этапе приближение к абсолютной температурной шкале. В отличие от эмпирических шкал в МПШТ использована одна экспериментальная репер- ная температурная точка. В качестве такой точки использована температура тройной точ- ки воды (когда в равновесии одновременно находятся лед, вода и водяной пар). Темпера- тура тройной точки воды принята в МПТШ за 273,16 К (точно). При атмосферном давле- нии лед плавится на 0,01° ниже. Реперной точке по шкале Цельсия - 0 °С - соответст- вует 273,15 К. Численное значение температур для всех других реперных точек (кроме тройной точки воды) непрерывно уточняют по мере повышения точности работы с газо- вым термометром. В 1968 г. в качестве эталонных температурных точек было рекомендо- вано использовать двенадцать реперных точек, охватывающих интервал от тройной точ- ки водорода до температуры плавления золота. В настоящее время температура по шкале Цельсия (t) выражается в виде связи с абсолютной температурой (T), которая имеет вид: T = 273,15 + t. Свойства системы, которые однозначно могут быть выражены как функ- ции температуры, давления и концентрации веществ, составляющих систему, называются термодинамическими функциями. Например, теплоемкость, внутренняя энергия, энтропия и др. Если изменение термодинамической функции зависит только от начального и конечного состояния системы и не зависит от пути процесса, то такая функция называется функцией состояния системы. Термодинамическим процессом называется всякое изменение в системе, свя- занное с изменением хотя бы одного из термодинамических параметров. Круговым процессом или циклом называется процесс, при котором тер- модинамическая система, выйдя из некоторого начального состояния и пре- терпев ряд изменений, возвращается в то же самое состояние; в этом процес- се изменение любого параметра состояния равно нулю. 10

ФИЗИЧЕСКАЯ ХИМИЯ

§ 1. Предмет физической химии. Её значение

Взаимосвязь химических и физических явлений изучает физическая химия. Эта отрасль химии является пограничной между химией и физикой. Пользуясь теорети­ческими и экспериментальными методами обеих наук, а также своими собственными методами, физическая химия занимается многосторонним исследованием химических реакций и сопутствующих им физических процессов. Поскольку, однако, даже многостороннее исследование никогда не является полным и не охватывает явление исчерпывающим образом, постольку законы и закономерности физической химии, как и других естественных наук, всегда упрощают явление и не отражают его полностью.

Быстрое развитие и растущее значение физической химии связаны с её пограничным положением между физикой и химией. Основная общая задача физической химии – предсказание временнóго хода процесса и конечного результата (состояния равновесия) в различных условиях на основании данных о строении и свойствах веществ, составляющих изучаемую систему.

§ 2. Краткий очерк истории развития физической химии

Термин «физическая химия» и определение этой науки впервые были даны М.В.Ломоносовым, который в 1752-1754 гг. читал студентам Академии наук курс физической химии и оставил рукопись этого курса «Введение в истинную физическую химию» (1752). Ломоносов выполнил многие исследования, темы которых соответствуют составленному им «Плану к курсу физической химии» (1752) и программе экспериментальных работ «Опыт физической химии» (1754). Под его руководством проводился также студенческий практикум по физической химии.

Ломоносов дал следующее определение физической химии: «Физическая химия есть наука, объясняющая на основании положений и опытов физики то, что происходит в смешанных телах при химических операциях». Это определение близко к современному.

Для развития физической химии огромное значение имело открытие двух законов термодинамики в середине XIX века (С.Карно, Ю.Р.Майер, Г.Гельмгольц, Д.П.Джоуль, Р.Клаузиус, В. Томсон).

Количество и разнообразие исследований, лежащих в области, пограничной между физикой и химией, постоянно возрастало в XIX веке. Было развито термодинамическое учение о химическом равновесии (К.М.Гульдберг, П.Вааге, Д.У.Гиббс). Исследования Л.Ф.Вильгельми положили начало изучению скоростей химических реакций (химическая кинетика). Исследовался перенос электричества в растворах (И.В.Гитторф, Ф.В.Г.Кольрауш), изучались законы равновесия растворов с паром (Д.П.Коновалов) и развивалась теория растворов (Д. И. Менделеев).

Признание физической химии как самостоятельной науки и учебной дисциплины выразилось в учреждении в Лейпцигском университете (Германия) в 1887 году первой кафедры физической химии во главе с В.Оствальдом и в основании там же первого научного журнала по физической химии. В конце XIX века Лейпцигский университет был центром развития физической химии, а ведущими физико-химиками являлись В.Оствальд, Я.Х.Вант-Гофф, С.Аррениус и В.Нернст. К этому времени определились три основных раздела физической химии – химическая термодинамика, химическая кинетика и электрохимия.

К важнейшим направлениям науки, развитие которых является необходимым условием технического прогресса, относится исследование химических процессов; физической химии принадлежит ведущая роль в развитии этой проблемы.

§ 3. Разделы физической химии. Методы исследования

Химическая термодинамика. В этом разделе на основе законов общей термодинамики излагаются законы химического равновесия и учение о фазовых равновесиях.

Учение о растворах ставит своей целью объяснение и предсказание свойств растворов (гомогенных смесей нескольких веществ) на основании свойств веществ, составляющих раствор.

Учение о поверхностных явлениях. Изучаются разнообразные свойства поверхностных слоёв твёрдых тел и жидкостей (границы раздела между фазами); одно из основных изучаемых явлений в поверхностных слоях – это адсорбция (накопление вещества в поверхностном слое).

В системах, где поверхности раздела между жидкими, твёрдыми и газообразными фазами сильно развиты (эмульсии, туманы, дымы и т. д.), свойства поверхностных слоёв приобретают основное значение и определяют многие своеобразные свойства всей системы в целом. Такие дисперсные (микрогетерогенные) системы изучаются коллоидной химией, которая является крупным самостоятельным разделом физической химии.

Приведенный перечень основных разделов физической химии не охватывает некоторых областей и более мелких разделов этой науки, которые можно рассматривать как части более крупных разделов или как самостоятельные разделы физической химии. Следует ещё раз подчеркнуть тесную взаимосвязь различных разделов физической химии. При исследовании любого явления приходится использовать арсенал представлений, теорий и методов исследования многих разделов химии (а нередко и других наук). Лишь при начальном знакомстве с физической химией можно в учебных целях распределить материал по указанным разделам.

Методы физико-химического исследования . Основные методы физической химии, естественно, являются методами физики и химии. Это – прежде всего экспериментальный метод – исследование зависимости свойств веществ от внешних условий, экспериментальное изучение законов протекания различных процессов и законов химического равновесия.

Теоретическое осмысление экспериментальных данных и создание стройной системы знаний основано на методах теоретической физики.

Термодинамический метод, являющийся одним из них, позволяет количественно связывать различные свойства вещества («макроскопические» свойства) и рассчитывать одни из этих свойств на основании опытных величин других свойств.

ГЛАВА I.
ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

§ 1. Энергия. Закон сохранения и превращения энергии

Неотъемлемым свойством (атрибутом) материи является движение; оно неуничтожимо, как и сама материя. Движение материи проявляется в разных формах, которые могут переходить одна в другую. Мерой движения материи является энергия. Количественно энергия выражается определенным образом через параметры, характерные для каждой конкретной формы движения, и в специфических для этой формы единицах.

В системе единиц СИ единицей энергии (теплоты и работы) является джоуль (Дж), равный работе силы в 1 Н на пути в 1 м. 1 Дж = 1 Н·м.

Широко распространенная единица энергии (теплоты) калория является в настоящее время внесистемной единицей, допускаемой для применения. Используемая в настоящее время калория по определению приравнивается определенному числу джоулей: 1 кал равна 4,1868 джоуля. Эта единица используется в теплотехнике и может быть названа теплотехнической калорией. В химической термодинамике используется несколько отличная единица, приравненная к 4,1840 джоуля и называемая термохимической калорией. Целесообразность её применения связана с удобством использования собранного в справочных изданиях обширного экспериментального термохимического материала, выраженного в этих единицах.

При превращении одной формы движения в другую энергии исчезнувшего и появившегося движения, выраженные в различных единицах, эквивалентны между собой, т. е. энергия исчезнувшего движения находится в постоянном количественном отношении к энергии возникшего движения (закон эквивалентных превращений энергии). Это отношение не зависит от величин энергий двух форм движений и от конкретных условий, при которых произошел переход одной формы движения в другую. Так, при превращении энергии электрического тока в энергию хаотического молекулярного движения всегда один джоуль электрической энергии превращается в 0,239 кал энергии молекулярного движения.

Таким образом, энергия как мера движения материи всегда проявляется в качественно своеобразном виде, соответствующем данной форме движения, и выражается в соответствующих единицах измерения. С другой стороны, она количественно отражает единство всех форм движения, их взаимную превращаемость и неуничтожимость движения.

Изложенный выше закон эквивалентных превращений энергии является физическим опытным законом. Закон эквивалентных превращений энергии может быть высказан иначе, а именно в виде закона сохранения и превращения энергии: энергия не создается и не разрушается; при всех процессах и явлениях суммарная энергия всех частей изолированной материальной системы, участвующих в данном процессе, не увеличивается и не уменьшается, оставаясь постоянной.

Закон сохранения и превращения энергии является универсальным в том смысле, что он применим к явлениям, протекающим в сколь угодно больших телах, представляющих совокупность огромного числа молекул, и к явлениям, происходящим с участием одной или немногих молекул.

Для различных форм механического движения закон сохранения энергии уже давно высказывался в качественной форме (Декарт – 1640) и количественной форме (Лейбниц – 1697).

Для взаимных превращений теплоты и работы (см. ниже) закон сохранения энергии был доказан как естественнонаучный закон исследованиями Ю. Р. Майера, Г.Гельмгольца и Д.П.Джоуля, проведенными в сороковых годах XIX века.

Пользуясь законом эквивалентных превращений, можно энергии различных форм движения выражать в единицах, характерных для одного вида энергии (одной формы движения), и затем производить операции сложения, вычитания и т. д.

§ 2. Предмет, метод и границы термодинамики

Термодинамика является одним из основных разделов теоретической физики. Термодинамика изучает законы взаимных превращений различных видов энергии, связанных с переходами энергии между телами в форме теплоты и работы. Сосредотачивая своё внимание на теплоте и работе, как формах перехода энергии при самых различных процессах, термодинамика вовлекает в круг своего рассмотрения многочисленные энергетические связи и зависимости между различными свойствами вещества и дает весьма широко применимые обобщения, носящие название законов термодинамики.

При установлении основных термодинамических закономерностей обычно не детализируются энергетические превращения (часто весьма сложные), происходящие внутри тела. Не дифференцируются также виды энергии, свойственные телу в данном его состоянии; совокупность всех этих видов энергии рассматривается как единая внутренняя энергия системы .

Предмет термодинамики, очерченный выше, определяет метод и границы этой науки. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, так как для одной молекулы или для совокупности небольшого числа молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, так называемые макроскопические системы, причем термодинамика в её классическом виде не принимает во внимание поведение и свойства отдельных молекул.

Термодинамический метод характеризуется также тем, что объектом исследования является тело или группа тел, выделяемых из материального мира в термодинамическую систему (в дальнейшем называемую просто системой).

Система имеет определенные границы, отделяющие её от внешнего мира (окружающей среды).

Система является гомогенной , если каждый её параметр имеет во всех частях системы одно и то же значение или непрерывно изменяется от точки к точке.

Система является гетерогенной , если она состоит из нескольких макроскопических (состоящих в свою очередь из множества молекул) частей, отделённых одна от другой видимыми поверхностями раздела. На этих поверхностях некоторые параметры изменяются скачкообразно. Такова, например, система «твёрдая соль – насыщенный водный раствор соли – насыщенный водяной пар». Здесь на границах соль – раствор и раствор – пар скачкообразно изменяются состав и плотность.

Гомогенные части системы, отделенные от остальных частей видимыми поверхностями раздела, называются фазами . При этом совокупность отдельных гомогенных частей системы, обладающих одинаковыми физическими и термодинамическими свойствами, считается одной фазой (например, совокупность кристаллов одного вещества или совокупность капелек жидкости, взвешенных в газе и составляющих туман). Каждая фаза системы характеризуется собственным уравнением состояния.

Система, которая не может обмениваться с окружающей средой веществом и энергией (в форме теплоты или работы), называется изолированной .

Система, которая может обмениваться с окружающей средой веществом и энергией (в форме теплоты или работы), называется открытой.

Система, которая не может обмениваться с окружающей средой веществом, но может обмениваться энергией (в форме теплоты или работы), называется закрытой .

Термодинамика изучает взаимную связь таких измеримых свойств материальной системы в целом и её макроскопических частей (фаз), как температура, давление, масса, плотность и химический состав фаз, входящих в систему, и некоторые другие свойства, а также связь между изменениями этих свойств.

Совокупность изучаемых термодинамикой свойств (так называемых термодинамических параметров системы ) определяет термодинамическое состояние системы. Изменение любых термодинамических свойств (хотя бы только одного) приводит к изменению термодинамического состояния системы.

Все процессы, встречающиеся в природе, можно разделить на самопроизвольные (естественные) и несамопроизвольные.

Самопроизвольные процессы – это такие процессы, которые не требуют затрат энергии извне. Например, переход теплоты от тела с более высокой температурой к телу с более низкой температурой, растворение соли в воде и т. п. протекают сами собой.

Несамопроизвольные процессы требуют для своего протекания затрат энергии извне, например, разделение воздуха на азот и кислород.

В термодинамике рассматриваются главным образом такие состояния системы, при которых её параметры (температура, давление, электростатический потенциал и др.) не изменяются самопроизвольно во времени и имеют одинаковое значение во всех точках объема отдельных фаз. Такие состояния называются равновесными.

Одним из основных постулатов термодинамики является утверждение, что протекание любого самопроизвольного процесса в конечном счете приводит изолированную систему в равновесное состояние, когда её свойства больше изменяться не будут, т. е. в системе установится равновесие.

Состояния, характеризуемые неравномерным и изменяющимся во времени распределением температуры, давления и состава внутри фаз, являются неравновесными . Они рассматриваются термодинамикой неравновесных (необратимых) процессов, в которой, кроме основных термодинамических законов, используются дополнительные предположения.

Термодинамика, построенная исходя из основных законов термодинамики, которые рассматриваются как обобщение опыта, называется часто классической или феноменологической термодинамикой. Термодинамика дает теоретические основы для учения о тепловых машинах; этот её раздел называется технической термодинамикой. Изучением химических процессов с термодинамической точки зрения занимается химическая термодинамика, являющаяся одним из основных разделов физической химии.

§ 3. Теплота и работа

Изменения форм движения при переходе его от одного тела к другому и соответствующие превращения энергии весьма разнообразны. Формы же самого перехода движения и связанных с ним переходов энергии могут быть разбиты на две группы.

В первую группу входит только одна форма перехода движения путём хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота .

Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение макроскопических масс под действием каких-либо внешних сил, имеющих направленный характер. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и т.д. Общей мерой передаваемого такими способами движения является работа .

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от одной части материального мира к другой.

Передача движения есть своеобразное сложное движение материи, две основные формы которого мы различаем. Теплота и работа являются мерами этих двух сложных форм движения материи, и их следует рассматривать как виды энергии.

Общим свойством теплоты и работы является то, что они имеют значение только в течение отрезков времени, в которые протекают эти процессы. В ходе таких процессов в одних телах уменьшается движение в тех или иных формах и убывает соответствующая энергия, одновременно в других телах увеличивается движение в тех же или других формах и возрастают соответствующие виды энергии.

Мы не говорим о запасе теплоты или работы в каком-либо теле, а только о теплоте и работе известного процесса. После его окончания о наличии в телах теплоты или работы говорить не приходится.

§ 4. Эквивалентность теплоты и работы

Постоянное эквивалентное отношение между теплотой и работой при их взаимных переходах установлено в классических опытах Д.П.Джоуля (1842-1867). Типичный эксперимент Джоуля заключается в следующем.

Прибор Джоуля для определения механического эквивалента теплоты.

Падающие с известной высоты грузы вращают мешалку, погруженную в воду, находящуюся в калориметре (груз и калориметр с водой составляют термодинамическую систему.) Вращение лопастей мешалки в воде вызывает нагревание воды в калориметре; соответствующее повышение температуры количественно фиксируется.

После того, как указанный процесс закончен, система должна быть приведена в исходное состояние. Это можно сделать путем мысленного опыта. Грузы поднимаются на исходную высоту, при этом затрачивается работа извне, которая увеличивает энергию системы. Кроме того, от калориметра отнимается (передается в окружающую среду) теплота путем охлаждения его до исходной температуры. Эти операции возвращают систему к исходному состоянию, т. е. все измеримые свойства системы приобретают те же значения, которые они имели в исходном состоянии. Процесс, в течение которого свойства системы изменялись, и в конце которого она вернулась к исходному состоянию, называется круговым (циклическим) процессом или циклом .

Единственным результатом описанного цикла является отнятие работы от среды, окружающей систему, и переход в эту среду теплоты, взятой у калориметра.

Сравнение этих двух величин, измеренных в соответствующих единицах, показывает постоянное отношение между ними, не зависящее от величины груза, размеров калориметра и конкретных количеств теплоты и работы в разных опытах.

Теплоту и работу в циклическом процессе целесообразно записать как сумму (интеграл) бесконечно малых (элементарных) теплот Q и бесконечно малых (элементарных) работ W , причем начальный и конечный пределы интегрирования совпадают (цикл).

Тогда эквивалентность теплоты и работы в циклическом процессе можно записать так:

(I, 1)

В уравнении (I, 1) знак обозначает интегрирование по циклу. Постоянство коэффициента k отражает эквивалентность теплоты и работы (k – механический эквивалент теплоты). Уравнение (I, 1) выражает закон сохранения энергии для частного, очень важного случая превращения работы в теплоту.

В исследованиях Джоуля, Роуланда (1880), Микулеску (1892) и др. использовались методы трения в металлах, удара, прямого превращения работы электрического тока в теплоту, растяжения твёрдых тел и др. Коэффициент k всегда постоянен в пределах ошибки опыта.

В дальнейшем изложении всегда предполагается, что работа и теплота с помощью коэффициента k выражены в одних единицах (безразлично каких) и коэффициент k опускается.

§ 5. Внутренняя энергия

Для некругового процесса равенство (I, 1) не соблюдается, так как система не возвращается в исходное состояние. Вместо этого равенства для некругового процесса можно записать (опуская коэффициент k ):


Так как пределы интегрирования в общем случае произвольны, то и для элементарных величин W и Q :

Q  W ,

следовательно:

Q – W  0

Обозначим разность Q W для любого элементарного термодинамического процесса через dU :

dU  Q – W (I, 2)

или для конечного процесса:


– (I, 2а)

Возвращаясь к круговому процессу, получаем (из уравнения I, 1):

=

= 0 (I, 3)

Таким образом, величина dU является полным дифференциалом некоторой функции состояния системы. При возвращении системы к исходному состоянию (после циклического изменения) величина этой функции приобретает первоначальное значение.

Функция состояния системы U , определяемая равенствами (I , 2) или (I , 2а), называется внутренней энергией системы .

Очевидно, выражение (I, 2а) может быть записано следующим образом:

= U 2 U 1 = ∆ U = (I, 2б)

U 2 U 1 = ∆U = Q – W

Данное рассуждение обосновывает опытным путем наличие определенной функции состояния системы, имеющей смысл суммарной меры всех движений, которыми система обладает.

Иначе говоря, внутренняя энергия включает поступательную и вращательную энергию молекул, колебательную энергию атомов и групп атомов в молекуле, энергию движения электронов, внутриядерную и другие виды энергии, т. е. совокупность всех видов энергии частиц в системе за исключением потенциальной и кинетической энергии самой системы.

Предположим, что циклический процесс удалось провести так, что после того, как система вернулась к исходному состоянию, внутренняя энергия системы не приняла начального значения, а увеличилась. В этом случае повторение круговых процессов вызвало бы накопление энергии в системе. Создалась бы возможность превращения этой энергии в работу и получения таким путем работы не за счёт теплоты, а «из ничего», так как в круговом процессе работа и теплота эквивалентны друг другу, что показано прямыми опытами.

Невозможность осуществления указанного цикла построения вечного двигателя (перпетуум мобиле) первого рода, дающего работу без затраты эквивалентного количества другого вида энергии, доказана отрицательным результатом тысячелетнего опыта человечества. Этот результат приводит к тому же выводу, который в частной, но более строгой форме мы получили, анализируя опыты Джоуля.

Сформулируем ещё раз полученный результат. Полный запас энергии системы (её внутренняя энергия) в результате циклического процесса возвращается к исходному значению, т. е. внутренняя энергия системы, находящейся в данном состоянии, имеет одно определенное значение и не зависит от того, каким изменениям система подвергалась перед тем, как прийти к данному состоянию.

Иными словами, внутренняя энергия системы есть однозначная, непрерывная и конечная функция состояния системы.

Изменение внутренней энергии системы определяется выражением (I, 2б); для кругового процесса справедливо выражение (I, 3). При бесконечно малом изменении некоторых свойств (параметров) системы внутренняя энергия системы изменяется также бесконечно мало. Это – свойство непрерывной функции.

В пределах термодинамики нет необходимости использовать общее определение понятия внутренней энергии. Формальное количественное определение через выражения (I, 2) или (I, 2а) достаточно для всех дальнейших термодинамических рассуждений и выводов.

Так как внутренняя энергия системы есть функция её состояния, то, как уже было сказано, прирост внутренней энергии при бесконечно малых изменениях параметров состояний системы есть полный дифференциал функции состояния. Разбивая интеграл в уравнении (I, 3) на два интеграла по участкам пути от состояния 1 до состояния 2 (путь «а») (см. рис. I) и обратно – от состояния 2

Углубленный курс физической химии 6 экзамен До освоения дисциплины «Углубленный курс физической химии » должны быть... по физической химии . / Под редакцией В.В. Буданова, Н.К. Воробьева. – Л.: Химия , 1986. ‑ 352 с. Практические работы по физической химии ...

  • Рабочая программа по дисциплине: «Органическая и физическая химия» для специальности 060601 Медицинская биохимия, код квалификации выпускника (65 специалист) форма обучения (очная)

    Рабочая программа

    На кафедре В библиотеке 1 Органическая и физическая химия (органическая химия , часть I). В.А.Старцева, Л.Е.Никитина, Н.П. ... На кафедре В библиотеке 1 Органическая и физическая химия (органическая химия , часть I). В.А.Старцева, Л.Е.Никитина, Н.П. ...

  • Контрольная работа №2 по физической химии

    Документ

    Контрольная работа № 2 по физической химии Вариант 2 Чему равен температурный... . Контрольная работа № 2 по физической химии Вариант 3 Перечислите физико-химические величины... Контрольная работа № 2 по физической химии Вариант 12 Электроды определения. ...

  • Методическое пособие для лабораторной работы №4 по курсу физической химии для студентов дневной формы обучения химико-технологического факультета и факультета строительного материаловедения

    Методическое пособие

    ВЕЛИЧИНЫ КОНСТАНТЫ РАВНОВЕСИЯ В практикумах по физической химии часто встречается лабораторная работа, касающаяся... с. 3. Петров Н.А., Черепанов В.А. Ермишина Ю.А. Практикум по физической химии . Методическое пособие. Екатеринбург: изд-во...

  • Программа вступительного экзамена по специальности 02. 00. 04 "физическая химия"

    Программа

    Равновесия // М.: Металлургия.-1988.-560с. Курс физической химии / Я.И. Герасимов, В.П. Древинг, Е.И. Ермин и др.: под... .- 1980.- 180с. Горшков Б.И., кузнецов И.А. / Основы физической химии . 2–е изд. // М.: Изд-во Московского университета...

  • Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Бюджетное учреждение среднего профессионального образования

    Ханты- мансийского автономного округа- Югры

    "Советский профессиональный колледж"

    Опорный конспект лекций

    по учебной дисциплине: "ЕН.03 Химия"

    по специальности: "260502 Технология продукции общественного питания"

    "Физическая и коллоидная химия"

    Аннотация

    Составитель: Иванова Л.В.

    Рецензенты:

    Полянская Т.В., преподаватель естественных дисциплин ФГОУ СПО "ОКТЭС";

    Чудновская В.Г., преподаватель, председатель ПУК химических дисциплин.

    Опорный конспект лекций составлен в соответствии с требованиями Федерального государственного образовательного стандарта (ФГОС) среднего профессионального образования к минимуму содержания по дисциплине "ЕН.03 Химия" по подготовке специалистов среднего звена: "260807 Технология продукции общественного питания".

    Работа с опорным конспектомлекций способствует переходу от обычного описательного восприятия физико-химических данных к количественным представлениям, т.е. приводит к глубокому и правильному их пониманию и, как следствие, к предсказательности протекающих процессов в коллоидных и других системах. Это помогает профессионально разрабатывать, используя научные основы физической и коллоидной химии, подходы к технологии получения, хранения и переработки продуктов питания.

    Пособие предназначено для организации аудиторной и внеаудиторной работы студентов по дисциплине "ЕН.03 Химия" (раздел 1 "Физическая химия", раздел 3 "Коллоидная химия").

    Введение

    Раздел 1. Физическая химия

    1.1 Основные понятия и законы термодинамики. Термохимия

    1.1.1 Основные понятия термодинамики

    1.1.2 Первый закон термодинамики

    1.1.3 Термохимия

    1.1.4 Второй закон термодинамики

    1.2 Агрегатные состояния веществ, их характеристика

    1.2.1 Характеристика газообразного состояния вещества

    1.2.2 Характеристика жидкого состояния вещества

    1.2.3 Характеристика твердого состояния вещества

    1.3 Химическая кинетика и катализ. Химическое равновесие

    1.3.1 Скорость химической реакции

    1.3.2 Катализ и катализаторы

    1.3.3 Химическое равновесие

    1.4 Свойства растворов

    1.4.1 Общая характеристика растворов

    1.4.2 Растворы газов в жидкостях

    1.4.3 Взаимная растворимость жидкостей

    1.4.4 Растворы твердых веществ в жидкостях

    1.4.5 Диффузия и осмос в растворах

    1.4.6 Давление насыщенного пара над раствором

    1.4.7 Замерзание и кипение растворов

    1.4.8 Свойства растворов электролитов

    1.5 Поверхностные явления. Адсорбция

    1.5.1 Адсорбция, ее виды

    1.5.2 Адсорбция на границе раздела "раствор-газ"

    1.5.3 Ионообменная адсорбция

    Раздел 2. Коллоидная химия

    2.1 Предмет коллоидной химии. Дисперсные системы

    2.1.1 Общая характеристика дисперсных систем

    2.1.2 Классификация дисперсных систем

    2.2 Коллоидные растворы

    2.2.1 Методы получения

    2.2.2 Строение коллоидной частицы

    2.2.3 Свойства коллоидных растворов

    2.3 Грубодисперсные системы

    2.3.2 Суспензии

    2.3.3 Эмульсии

    2.3.4 Аэрозоли

    2.4 Физико-химические изменения органических веществ пищевых продуктов

    2.4.1 Белки, их химическое строение и аминокислотный состав

    2.4.2 Углеводы - высокомолекулярные полисахариды

    2.4.4 Студни

    Библиографический список

    Введение

    Физическая химия - это наука, изучающая связь химических и физических свойств веществ, химических и физических явлений и процессов.

    Только на основе законов физической химии могут быть понятны, и осуществлены такие распространенные в различных отраслях пищевой промышленности процессы, как выпаривание, кристаллизация, сушка, сублимация, сепарация, дистилляция, экстрагирование и растворение. Без знаний методов физической химии невозможен технологический контроль пищевых производств: определение влажности, кислотности, содержание сахаров, белков, жиров, витаминов и т.д.

    Основоположником физической химии является М.В. Ломоносов. Он в 1752-1754 гг. первым из ученых прочитал студентам курс физической химии. Чтение курса сопровождалось демонстрацией опытов и проведением лабораторных работ. Ломоносов первый предложил термин "физическая химия" и дал этой научной дисциплине следующее определение: "Физическая химия есть наука, объясняющая на основе положений и опытов физики то, что происходит в смешанных телах при химических операциях". Таким образом, М.В. Ломоносов рассматривал физическую химию как науку, призванную дать физическое объяснение сущности химических процессов.

    М.В. Ломоносовым был написан первый в мире учебник по физической химии. Открытие великим ученым закона сохранения материи и энергии, учение о существовании абсолютного нуля, кинетическая теория газов, ряд работ по исследованию растворов явились основой зарождающейся физической химии, способствовали оформлению ее в самостоятельную науку. Период выделения в отдельную науку длился более 100 лет. Курс физической химии за это время никем из ученых не читался.

    Одним из разделов физической химии, который превратился в самостоятельную науку, является коллоидная химия.

    Коллоидная химия - это наука, изучающая свойства гетерогенных высокодисперсных систем и растворов полимеров.

    Кулинарные процессы: коагуляция белков (при тепловой обработке мяса, рыбы, яиц и т.п.), получение стойких эмульсий (многие соусы), пен (взбивание сливок, белков, муссов), старение студней (очерствение хлеба, отделение жидкости от киселей, желе и т.п.), адсорбция (осветление бульонов) - относятся к коллоидным процессам. Они лежат в основе всех пищевых производств.

    Законы физической и коллоидной химии лежат в основе мероприятий по охране окружающей среды. Как правило, сточные воды, дым заводских труб - также коллоидные системы. Методы разрушения этих коллоидных систем основаны на законах физколлоидной химии.

    Раздел 1. Физическая химия

    1. 1 Основные понятия и законы термодинамики . Терм о химия

    1.1.1 Основные понятия термодинамики

    Термодинамика - наука, которая изучает общие законы взаимного превращения энергии из одной формы в другую.

    Химическая термодинамика количественно определяет тепловые эффекты различных процессов, выясняет принципиальную возможность самопроизвольного течения химических реакций и условия, при которых химические реакции могут находиться в состоянии равновесия.

    Объектом изучения в термодинамике является система - тело или группа тел, фактически или мысленно отделенных от окружающей среды. Системой можно назвать кристалл минерала, раствор любого вещества в какой-либо емкости, газ в баллоне и т.д.

    Систему называюттермодинамической ,если между телами, ее составляющими, может происходить обмен теплотой, веществом и если система описывается полностью термодинамическими параметрами.

    Виды систем (в зависимости от характера взаимодействия с окружающей средой)

    Открытая

    Закрытая

    Изолированная

    Обменивается энергией и веществом с окружающей средой.

    Не может обмениваться с окружающей средой веществом, но может обмениваться с ней энергией и работой.

    Не имеет обмена веществом и энергией с внешней средой. Внутри системы могут происходить передача теплоты, взаимные превращения энергии, выравнивание концентраций, но внутренняя энергия системы остается постоянной.

    Открытая колба с раствором, из которой может испаряться растворитель, и которая может нагреваться и охлаждаться.

    Плотно закрытая колба с веществом.

    Реакция, идущая в термостате.

    Система может быть гомогенной - состоит из одной фаза (воздух, кристалл, соли) и гетерогенной - состоит из нескольких фаз (лед-вода, вода-бензол).

    Фаза -часть гетерогенной системы, отделенная поверхностями раздела и характеризующаяся одинаковыми физическими свойствами во всех своих точках.

    Окружающая среда - это все, что находится в прямом или косвенном контакте с системой. Принято считать, что окружающая среда имеет такой большой размер, что отдача или приобретение ею теплоты не изменяет ее температуру.

    Состояние термодинамической системы определяется массой, объемом, давлением, составом, теплоемкостью и др. характеристикам, которые называются параметрами состо я ния .

    Если параметры состояния системы со временем не изменяются, то такое состояние считается равновесным . В равновесной термодинамической системе параметры состояния связаны между собой определенными математическими уравнениями - уравнениями состояния (например, уравнение Клайперона-Менделеева для состояния идеального газа).

    Параметры, которые поддаются непосредственному измерению, называют основными параметрами состояния . Параметры состояния, которые не поддаются непосредственному измерению (внутренняя энергия, энтальпия, энтропия, термодинамические потенциалы), рассматривают как функции основных параме т ров состояния .

    Термодинамически е процесс ы -изменения параметров состояния системы:

    · изотермический (Т=const);

    · изобарный (Р=const);

    · изохорный (V=const).

    Все тела в природе независимо от агрегатного состояния обладают определенным запасом внутренней энергии.

    Энергия складывается из кинетической энергии молекул, включающей энергию поступательного и вращательного движения, энергии движения атомов в молекулы, электронов в атомах, внутриядерной энергии, энергии взаимодействия частиц друг с другом и т.п. Кинетическая и потенциальная энергия самого тела во внутреннюю энергию не входит. Внутренняя энергия является функцией состояния. Абсолютное значение внутренней энергии определить нельзя, можно только измерить изменение внутренней энергии (U). Изменение внутренней энергии не зависит от пути перехода, а зависит только от начального и конечного состояния системы.

    Теплота (Q) (или тепловой эффект процесса) - это количественная характеристика энергии, которую система в ходе данного процесса получает (отдает) от окружающей среды. Теплота является формой передачи энергии, реализуемой путем изменения кинетической энергии теплового (хаотического) движения частиц (атомов, молекул). Если процесс сопровождается переходом энергии от окружающей среды к системе, он называется эндотермическим , в противном случае - экзотермическим. Любая экзотермическая реакция в прямом направлении становится эндотермической, если она идет в обратном направлении, и наоборот.

    Работа (А) ,совершаемая системой, обусловлена взаимодействием системы с внешней средой, в результате чего преодолеваются внешние силы, т.е. работа является одной из форм обмена энергией с окружающей средой и служит количественной характеристикой переданной энергии, причем передача энергии реализуется путем упорядоченного (организованного) движения молекул под действием определенной силы.

    1.1. 2 Первый закон термодинамики

    Это всеобщий закон природы, закон сохранения и превращения энергии, соответствующий основному положению диалектического материализма о вечности и неуничтожимости движения. Впервые этот закон в 1842 г. сформулировал выдающийся немецкий физик Ю. Мейер.

    Энергия не исчезает и не возникает из ничего, а только превращается из одного вида в другой в строго эквивалентных соотношениях.

    В зависимости от вида системы первый закон термодинамики имеет различные формулировки.

    Для закрытой системы этот закон термодинамики устанавливает связь между теплотой, полученной или выделенной системой в некотором процессе, изменением внутренней энергии системы и произведенной при этом работой.

    В изолированной системе внутренняя эне р гия постоянна, т. е. U=0.

    Если к закрытой системе подвести теплоту Q, то эта энергия расх о дуется на увеличение внутренней энергии системы U и на совершение си с темой работы А против вне ш них сил окружающей среды:

    В изобарно-изотермических условиях, в которых функционируют живые организмы:

    где: р - внешнее давление,

    V - изменение объема системы.

    Подставим (1.2) в (1.1).

    Qр = U+рV = (U кон - U нач) + (рV кон - рV нач) = (U кон + рV кон) - (U кон + рV нач) (1.3)

    Сумма внутренней энергии системы и произведения объема на давление (U+рV) называется энтальпией (Н) -термодинамическая функция, характеризующая энергетическое состояние системы при изобарно-изотермических условиях. Таким образом:

    Э нтальпия - это сумма всех видов энергии, сосредоточенной в данной системе, включая и механическую энергию частиц, которая может проявиться в виде работы при расширении. Химические реакции и физико-химические процессы могут протекать с выделением и поглощением энергии. Их делят на экзотермические и эндотермические.

    Процессы, в которых теплота выделяется, называются экзотермическим и ,процессы, протекающие с поглощением теплоты, - эндотермич е скими .

    В экзотермических процессах энтальпия уменьшается (Н кон Н нач), следовательно:

    ДH = (H кон - H нач);

    В эндотермических процессах энтальпия увеличивается (Н кон Н нач), следовательно:

    ДH = (H кон - H нач) 0,

    Энтальпия системы зависит от давления, температуры, количества вещества.

    В изобарно-изотермических условиях количество теплоты, которое выделяется или поглощается в ходе химической реакции, характеризуется изменением энтальпии и называется энтальпией реакции Н . Изменение энтальпии реакции, определенное при стандартных условиях, называется стандартной энтальпией реакции и обозначается Н 0.

    Энтальпия реакции, т.е. тепловой эффект реакции, зависит только от природы и состояния исходных веществ и конечных продуктов и не зав и сит от пути, по к о торому протекает реакция.

    Стандартные условия:

    · количество вещества 1 моль;

    · давление 760 мм. рт. ст. или 101,325 кПа;

    · температура 298 0 К или 25 0 С.

    1.1. 3 Термохимия

    Химическое уравнение , в котором указано значение энтальпии (или тепловой эффект) реакции, называется термохимическим .

    Термохимическими уравнениями пользуются в термохимии. Термохимия определяет тепловые эффекты химической реакции и переходов из одного состояния в другое. Термохимическое уравнение отличается от химического тем, что в термохимических уравнениях указывают абсолютную величину и знак теплового эффекта реакции, который относят к одному молю исходного или полученного вещества, поэтому стехиометрические коэффициенты в термохимических уравнениях могут быть дробными. В термохимических уравнениях отмечают также агрегатное состояние и кристаллическую форму.

    Энтальпию реакции можно определить как экспериментально, так и методом расчета с использованием энтальпий образования веществ, участвующих в химической реакции на основе закона Гесса (1840 г.):

    В термохимических расчетах большое значение имеют следствия из закона Гесса:

    1 следствие. Энтальпия реакции равна разности алгебраической суммы энтальпий образования продуктов и исходных веществ с учетом стехиометрических коэффициентов в уравнении реакции.

    2 следствие. Энтальпия прямой реализации численно равна энтальпии обратной реакции, но с противоположным знаком.

    1.1. 4 Второй закон термодинамики

    Это законимеет следующие формулировки:

    Перенос теплоты от холодного тела к горячему связан с компенсацией, т.е. с необходимостью дополнительной затраты работы, которая переходит в конечном счете в теплоту, поглощаемую горячим телом (так, в домашнем холодильнике происходит перенос теплоты от предметов к деталям прибора, а затем к воздуху. Этот перенос требует затраты электроэнергии). Процессы, реализация которых связаны с компенсацией, называют необрат и мыми .

    Невозможен самопроизвольный (естественный, спонтанный) переход энергии (в форме теплоты) от менее нагретого тела к более нагр е тому.

    Тепло океана, например, может быть в принципе превращено в работу (согласно первому закону термодинамики), однако только при наличии соответствующего холодильника (согласно второму закону термодинамики).

    Невозможно создать вечный двигатель 2-го рода .

    Применительно к химическим реакциям (при Р, Т=const) это положение выражается следующим математическим уравнением:

    H = G + TS или G = H - TS, (1.5)

    где Н - тепловой эффект реакции, наблюдаемый при ее необратимом течении;

    G - изменение свободной энергии Гиббса (свободной энергии при постоянном давлении), или изменение изобарно-изотермического потенциала, то есть это та максимальная часть энергии системы, которая в данных условиях может превратиться в полезную работу. При G 0 реакция протекает самопроизвольно.

    Даже при обратимом течении реакции в работу может перейти только часть теплоты процесса. Другая часть, не превращенная в р а боту, передается при этом от более нагретых к более холодным частям сист е мы.

    Введенная в уравнение (1.5) функция S получила название энтр о пии .

    Энтропия является функцией каждого конкретного, стационарного состояния и не зависит от пути к достижению нового состояния (например, от того, какие промежуточные стадии проходит система при переходе из состояния 1 в состояние 2).

    Произведение TS - переносимое тепло (Q), которое не может быть превращено в работу даже при обратимом ходе реакции (величина "связанной энергии"). Это произведение показывает количество внутренней энергии, теряемой в форме теплоты:

    TS = Q, или S = Q/T, (1.6)

    Изменение энтропии системы при реакции, равное сообщенному системе теплу, деленному на абсолютную температуру, при которой система эту теплоту получает (отдает).

    Кроме термодинамического потенциала - свободной энергий Гиббса G, в термодинамике в качестве вспомогательной функции для описания процессов большое значение имеет также и другой введенный термодинамический потенциал - свободная энергия Гельмгольца F (свободная энергия при постоянном объеме), или изохорно-изотермический потенциал:

    F = U - TS (при V, T=const) (1.7)

    Самопроизвольные процессы могут производить работу. Равновесие наступает тогда, когда эта возможность исчерпывается. Поскольку самопроизвольным процессам соответствуют отрицательные изменения F и G, то знак изменения функции G (при Р, Т=const) или функции F (при V, T=const) и будет показывать возможность или невозможность самопроизвольного протекания реакции. Если изменения этих функций для состояния системы 1 и 2 равны нулю, то система находится в равновесии.

    Энтропия отличается от других параметров состояния системы (P, T, V) тем, что ее численное значение и значение ее изменения не поддаются непосредственному измерению и могут быть получены только косвенным, расчетным путем. Для расчета S энтропии реакции аА+bB=cC=dD надо из суммы энтропий веществ правой части уравнения вычесть сумму энтропий веществ левой части уравнения (с учетом стехиометрических коэффициентов). Так, для стандартных условий:

    S 0 298K = S 0 298K (продуктов) - S 0 298K (реагентов), (1.8)

    Самопроизвольно в изолированной системе могут протекать только те процессы, которые связаны с увеличением энтропии, т.е. система из менее вероятного состояния переходит в более вероятное и достигает такого макроскопического состояния, которому соответствует небольшое число микроскопических состояний. Другими словами, процессы бывают самопроизвольными, когда конечное состояние может быть реализовано большим числом микросостояний и энтропия является мерой стремления системы к равновесию. Такие процессы должны сопровождаться увеличением энтропии.

    Вопросы для самоконтроля :

    1. Какие принципиальные вопросы решает химическая термодинамика?

    2. Что называют системой, термодинамической системой?

    3. Что называется параметрами состояния? Какие бывают параметры состояния?

    4. Что называют термодинамическим процессом?

    5. Как формулируется первое начало термодинамики?

    6. В каком соотношении находятся энтальпия внутренняя энергия системы?

    7. Что такое стандартная энтальпия образования?

    8. Чем отличаются химические уравнения от термохимических?

    9. Что определяет второе начало термодинамики?

    10. Что нужно знать, чтобы определить принципиальную возможность той или иной реакции в данных условиях?

    11. Какие термодинамические факторы определяет направление химических реакций?

    12. Как изменяются изобарно-изотермический и изохорно-изотермический потенциалы в самопроизвольно идущем процессе?

    1. 2 Агрегатные состояния веществ, их характеристика

    В зависимости от внешних условий (температуры и давления) каждое вещество может находиться в одном из трех агрегатных состояний: твердом, жи д ком или газообразном .Эти состояния называются агрегатными состояниями .Для некоторых веществ характерно только два или даже одно агрегатное состояние. Например, нафталин, йод при нагревании в обычных условиях из твердого состояния переходят в газообразное, минуя жидкое. Такие вещества, как белки, крахмал, каучуки, имеющие огромные макромолекулы, не могут существовать в газообразном состоянии.

    Газы не имеют постоянной формы и постоянного объема. Жидкости имеют постоянный объем, но не имеют постоянной формы. Твердые характеризуются постоянством формы и объема.

    1.2. 1 Характеристика газообразного состояния вещества

    Для газов характеры следующие свойства:

    Равномерное заполнение всего предоставленного объема;

    Малая плотность по сравнению с жидкими и твердыми веществами и большая скорость диффузии;

    Сравнительно легкая сжимаемость.

    Эти свойства определяются силами межмолекулярного притяжения и расстоянием между молекулами.

    В газе молекулы находятся на очень большом расстоянии друг от друга, силы притяжения между ними ничтожно малы. При низких давлениях расстояния между молекулами газа настолько велики, что по сравнению с ними размером молекул, а, следовательно, объемом молекул в общем объеме газа можно пренебречь. При больших расстояниях между молекулами практически отсутствуют силы притяжения между ними. Газ в таком состоянии называется идеальным .При нормальных условиях Т=273 0 К (0 0 С) и p=101,325 кПа реальные газы независимо от природы можно считать идеальными иприменять к ним уравнение состо я ния идеального г а за (уравнение Клайперона- Менделеева):

    где Р- давление газа,

    V - объем газа,

    Количество вещества,

    R - универсальная газовая постоянная (в единицах СИ R =8,314 Дж/мольК),

    Т - абсолютная температура.

    Реальные газы при высоких давлениях и низких температурах не подчиняются уравнению состояния идеального газа, так как в этих условиях начинают проявляться силы взаимодействия между молекулами и уже нельзя пренебрегать собственным объемом молекул по сравнению с объемом тела. Для математического описания поведения реальных газов используют уравнение Ван-дер-Ваальса:

    (р + n 2 a/V 2) (V - nb) = vRT, (2.2)

    где а и b - постоянные,

    a/V 2 - поправка на взаимное притяжение,

    b - поправка на собственный объем молекул,

    n- число молей газа.

    С увеличением давления и понижением температуры расстояния между молекулами уменьшаются, а силы взаимодействия увеличиваются так, что вещество из газообразного состояния может перейти в жидкое. Для каждого газа существует предельная критическая температура , выше которой газ не может быть превращен в жидкость ни при каком давлении. Давление, необходимое для сжижения газа при критической температуре, называется критическим давлением ,а объем одного моля газа при этих условиях критическим объ е мом .

    Рис. 1. Изотермы реального газа

    Состояние газа при критических параметрах называют критическим с о стоянием .В критическом состоянии исчезает различие между жидкостью и газом, они имеют одинаковые физические свойства.

    Переход газа в жидкость можно показать графически. На рисунке 1 приведена графическая зависимость между объемом и давлением при постоянных температурах. Такие кривые называются из о термами. У изотерм можно выделить три участка: АВ, ВС, CD при низких температурах. АВ - соответствует газообразному состоянию, ВС - отвечает переходу газа в жидкость, CD - характеризует жидкое состояние. С повышением температуры участок ВС уменьшается и превращается в точку перегиба К, называемую критической точкой.

    Сжиженные газы находят большое промышленное применение. Жидкий СО 2 используется для газирования фруктовых и минеральных вод, приготовления шипучих вин. Жидкий SO 2 используют как дезинфицирующее средство для уничтожения плесневых грибков в подвалах, погребах, винных бочках, бродильных чанах. Жидкий азот широко применяют в медицине и биологии для получения низких температур при консервировании, замораживании крови и биологических тканей. Жидкие газы удобнее транспортировать.

    1.2. 2 Характеристика жидкого состояния вещества

    В отличие от газов между молекулами жидкости действуют достаточно большие силы взаимного притяжения, что определяет своеобразный характер молекулярного движения. Тепловое движение молекулы жидкости включает колебательное и поступательное движения. Каждая молекула в течение какого-то времени колеблется около определенной точки равновесия, затем перемещается и снова занимает новое равновесное положение. Это определяет ее текучесть. Силы межмолекулярного притяжения не дают молекулам при их движении далеко отходить друг от друга. Суммарный эффект притяжения молекул можно представить, как внутреннее давление жидкостей, которое достигает очень больших значений. Этим и объясняются постоянство объема и практическая несжимаемость жидкостей, хотя они легко принимают любую форму.

    Свойства жидкостей зависят также от объема молекул, формы и полярности их. Если молекулы жидкости полярны, то происходит объединение (ассоциация) двух и более молекул в сложный комплекс. Такие жидкости называют ассоциир о ванными жидкостями. Ассоциированные жидкости (вода, ацетон, спирты) имеют более высокие температуры кипения, обладают меньшей летучестью, более высокой диэлектрической проницаемостью. Например, этиловый спирт и диметиловый эфир имеют одинаковую молекулярную формулу (С 2 Н 6 О). Спирт является ассоциированной жидкостью и кипит при более высокой температуре, чем диметиловый эфир, который относится к неассоциированным жидкостям.

    Жидкое состояние характеризуют такие физические свойства, как пло т ность, вязкость, поверхностное натяжение.

    Поверхностное натяжение.

    Состояние молекул, находящихся в поверхностном слое, существенно отличается от состояния молекул в глубине жидкости. Рассмотрим простой случай - жидкость - пар (рис. 2).

    Рис. 2. Действие межмолекулярных сил на поверхности раздела и внутри жидкости

    На рис. 2 молекула (а) находится внутри жидкости, молекула (б) - в поверхностном слое. Сферы вокруг них - расстояния, на которые распространяются силы межмолекулярного притяжения окружающих молекул.

    На молекулу (а) равномерно действуют межмолекулярные силы со стороны окружающих молекул, поэтому силы межмолекулярного взаимодействия компенсируются, равнодействующая этих сил равна нулю (f=0).

    Плотность пара значительно меньше плотности жидкости, так как молекулы удалены друг от друга на большие расстояния. Поэтому молекулы, находящиеся в поверхностном слое, почти не испытывают силы притяжения со стороны этих молекул. Равнодействующая всех этих сил будет направлена внутрь жидкости перпендикулярно ее поверхности. Таким образом, поверхностные молекулы жидкости всегда находятся под действием силы, стремящейся втянуть их внутрь и, тем самым, сократить поверхность жидкости.

    Чтобы увеличить поверхность раздела жидкости, необходимо затратить работу А (Дж). Работа, необходимая для увеличения поверхности раздела S на 1 м 2 , является мерой поверхностной энергии или поверхностным натяжением .

    Таким образом, поверхностное натяжение д (Дж/м 2 = Нм/м 2 = Н/м) - результат некомпенсированности межмолекулярных сил в поверхностном слое:

    д = F/S (F - поверхностная энергия) (2.3)

    Существует большое число методов определения поверхностного натяжения. Наиболее распространены сталагмометрический метод (метод счета капель) и метод наибольшего давления газовых пузырьков.

    При помощи методов рентгеноструктурного анализа было установлено, что в жидкостях есть некоторая упорядоченность пространствен-ного расположения молекул в отдельных микрообъемах. Вблизи каждой молекулы наблюдается так называемый ближний порядок. При удалении от нее на некоторое расстояние эта закономерность нарушается. И во всем объеме жидкости порядка в расположении частиц нет.

    Рис. 3. Сталагмометр Рис. 4. Вискозиметр

    Вязкость з (Па·с) - свойство оказывать сопротивление перемещению одной части жидкости отно-сительно другой. В практической жизни человек сталкивается с большим множеством жидких систем, вязкость которых различна, - вода, молоко, растительные масла, сметана, мед, соки, патока и т.д.

    Вязкость жидкостей обусловлена межмолекулярным воздействием, ограничивающим подвижность молекул. Она зависит от природы жидкости, температуры, давления.

    Для измерения вязкости служат приборы, называемые вискозиметрами. Выбор вискозиметра и метода определения вязкости зависит от состояния исследуемой системы и ее концентрации.

    Для жидкостей с малой величиной вязкости или небольшой концентрацией широко используют вискозиметры капиллярного типа.

    1.2. 3 Характеристика твердого состояния вещества

    Твердые тела в отличие от жидкостей и газов сохраняют свою форму. Силы притяжения между частицами, составляющими твердое тело, настолько велики, что они не могут двигаться свободно относительно друг друга, а только колеблются около какого-то среднего положения.

    Все твердые тела делят на кристаллические и аморфные .В кристаллических телах частицы расположены в определенном характерном для каждого вещества порядке и этот порядок распространяется на весь объем. Во всем объеме аморфного тела порядка в расположении частиц нет. В этом отношении аморфные тела можно рассматривать как жидкости с аномально большой вязкостью.

    Очень часто аморфная и кристаллическая формы являются различными состояниями одного и того же вещества. Так, диоксид кремния встречается в природе и в форме кристаллов кварца (горный хрусталь), и в аморфном виде - минерал кремень. Известен кристаллический и аморфный углерод.

    Кристаллическая форма - наиболее устойчивая, вещества постепенно переходят из аморфного состояния в кристаллическое. В обычных условиях этот процесс идет очень медленно, повышение температуры может его ускорить. Например, сахар может быть в кристаллическом (сахар-песок, кусковой сахар) и в аморфном (карамелизованный) состояниях. Со временем карамель может кристаллизоваться, что нежелательно в кондитерском производстве. кинетика адсорбция дисперсная коллоидный

    Порядок в пространственном расположении частиц и кристаллических тел - кристаллическая решетка - определяет внешние признаки кристаллического состояния. К ним относятся: 1) определенная и резко выраженная температура плавления; 2) определенная геометрическая форма одиночных кристаллов; 3) анизотропия.

    Вопросы для самоконтроля :

    При каких условиях свойства реального газа приближаются к свойствам идеального?

    Можно ли безгранично сжимать реальный газ?

    Каков физический смысл постоянных в уравнении состояния реального газа?

    Можно ли, зная температуру и давление, определить число молекул в единице объема?

    Чем обусловлена малая сжимаемость жидкостей?

    Как влияет на свойства жидкости образование водородной связи между молекулами?

    Чем объяснить, что с повышением температуры уменьшаются поверхностное натяжение и вязкость?

    По каким признакам можно отличить кристаллическое тело от аморфного?

    В чем состоит основное различие в строении кристаллических и аморфных тел?

    1. 3 Химическая кинетика и катализ. Химическое равновесие

    1.3.1 Скорость химической реакции

    Кинетика -учение о скорости и механизме химических реакций.

    Вопрос о скорости химической реакции имеет большое практическое и теоретическое значение. От скорости реакции зависит течение биохимических процессов в организме, физико-химические изменения пищевых продуктов при тепловой обработке, производительность заводской аппаратуры.

    Скорость химических процессов можно регулировать, изменяя условия их протекания. В некоторых случаях желательно интенсифицировать процесс, чтобы получить больше продукта в единицу времени. Иногда требуется уменьшить скорость химической реакции, например, замедлить окисление жиров в пищевых продуктах. Все эти задачи можно решить, применяя законы химической кинетики.

    Скорость реакции -изменение концентрации реагирующих веществ в единицу времени.

    где с - изменение концентрации реагирующих веществ,

    t - промежуток времени.

    Зависимость скоростных химических реакций от концентрации определяетсязаконом действующих масс, открытым опытным путем К.М. Гульдбергом и П. Вааге в 1867 году.

    Для реакции аА + bB = С

    где: А и B - концентрации реагирующих веществ,

    а и b - коэффициенты в уравнении,

    k - коэффициент пропорциональности, называемый константой скорости, зависящей от природы реагирующих веществ и температуры.

    Скорость химической реакции пропорциональна произведению конце н траций реагирующих веществ, взятых в степенях, равных к о эффициентам в уравнении реа к ции.

    Константа скорости реакции численно равна скорости реакции при концентрациях реагирующих веществ, равных единице.

    Факторы, влияющие на скорость химической реакции:

    · природа реагирующих веществ;

    · концентрация реагирующих веществ;

    · температура;

    · давление (для газов);

    · площадь соприкосновения реагирующих веществ;

    · присутствие катализатора.

    При повышении температуры увеличивается скорость движения молекул, а, следовательно, и число столкновений между ними в единицу времени.

    Влияние температуры на скорость химической реакции подчиняется правилу Вант-Гоффа.

    При повышении температуры на каждые 10 градусов скорость бол ь шинства реакций увеличивается в 2-4 раза.

    Число, показывающее, во сколько раз увеличивается скорость данной реакции при повышении температуры на 10 градусов, называется температурным к о эффициентом реакции . Математически эта зависимость выражается соотношением:

    где - температурный коэффициент реакции,

    и 0 - скорости реакции при начальной (t 1) и конечной (t 2) температурах;

    t - изменение температуры t 2 - t 1 .

    Правило Вант-Гоффа приближенное и может применяться к реакциям, протекающим при температурах от 0 до 300 градусов и в небольшом температурном интервале. С повышением температуры температурный коэффициент скорости реакции уменьшается, приближаясь к единице.

    Более точная зависимость скорости химической реакции от температуры экспериментально установлена Аррениусом:

    где k - константа скорости реакции,

    В и А - постоянные для данной реакции.

    1.3. 2 Катализ и катализаторы

    Катализатор -вещество, изменяющее скорость химической реакции, но при этом не расходующееся. Катализаторы бывают ускоряющимися и замедляющимися.

    Катализ -явление изменения скорости реакции в присутствии катализаторов.

    Каталитические реакции -реакции, протекающие с участием катализаторов.

    Если катализатором является один из продуктов реакции, то реакцию называют автокаталитической , а само явление - автокатализом.

    Ингибитор -катализатор, замедляющий реакцию.

    Примером положительных катализаторов может служить вода при взаимодействии порошка алюминия с йодом.

    Ферменты -биологические катализаторы белковой природы.

    Ферменты присутствуют во всех живых клетках. Принято разделять ферменты на простые и сложные, или однокомпонентные или двухкомпонентные. Простые ферменты состоят только из белка, сложные из белка и небелковой части, которую называют коферментом.

    Ферменты отличаются высокой каталитической активностью и избирательностью. По каталитической активности они значительно превосходят неорганические катализаторы. Например, 1 моль каталазы при 0 градусов разлагает за одну секунду 200 000 молей Н 2 О 2 , а 1 моль платины при 20 градусах разлагает за одну секунду от 10 до 80 молей перекиси водорода.

    Такие ускорения реакции связаны с тем, что ферменты резко снижают энергетические барьеры на реакционном пути. Например, энергия активации для реакции распада Н 2 О 2 под действием иона железа (II) и молекул каталазы соответственно равна 42 и 7,1 кДж/моль; для гидролиза мочевины кислотой и уреазой - соответственно 103 и 28 кДж/моль.

    Ферменты по сравнению с неорганическими катализаторами весьма специфичны. Например, амилаза, содержащаяся в слюне, легко и быстро расщепляет крахмал, но не катализирует процесс распада сахара. Уреаза исключительно эффективно катализирует гидролиз мочевины, но не оказывает никакого воздействия на ее производные. Такая особенность ферментов позволяет живым организмам, имея соответствующий набор ферментов, активно откликаться на воздействия извне. Например, замечено, что в стрессовых ситуациях наш организм проявляет удивительные возможности. Описан факт, когда слабая женщина подняла за бампер легковой автомобиль и удерживала его, пока подоспевшие люди освобождали попавшего под него ребенка; человек, преследуемый разъяренным животным, легко преодолевает препятствия, непреодолимые для него в обычном состоянии; на ответственных соревнованиях спортсмены теряют в весе по несколько килограммов за период выступления.

    Все сказанное о замечательных свойствах ферментов объясняется тем, что избирательность действия (селективность) и активность взаимосвязаны: чем выше селективность, тем выше ее активность. Ферменты обладают уникальной селективностью, поэтому и активность их наивысшая.

    1.3. 3 Химическое равновесие

    Обратимые реакции могут идти в двух взаимопротивоположных направлениях. Они не доходят до конца, а заканчиваются установлением химического равновесия.

    Химическое равновесие -состояние системы, когда скорости прямой и обратной реакции становятся равными.

    Состояние химического равновесия сохраняется до тех пор, пока не изменятся условия. При изменении внешних условий равновесие нарушается, и через некоторое время система придет в новое состояние равновесия.

    Сдвиг равновесия -переход системы из одного состояния равновесия в другое.

    Направление смещения равновесия определяется принципом Ле Шат е лье.

    Если на равновесную систему оказано воздействие, то равнов е сие смещае т ся в сторону, ослабляющую данное воздействие.

    Например, увеличение температуры смещает равновесие в сторону эндотермической реакции, увеличение концентрации исходных веществ смещает равновесие с сторону продуктов реакции. Давление изменяет равновесие только реакций, в которых участвуют газы. Увеличение давления смещает равновесие в сторону реакции, идущей с изменением объема.

    Вопросы для самоко н троля :

    1. Что изучает кинетика?

    2. Что называется скоростью химических реакций?

    3. Почему в математическом уравнении скорости химической реакции стоит знак "минус"?

    4. Перечислите факторы, влияющие на скорость химической реакции.

    5. Опишите влияние концентрации, температуры, природы реагирующих веществ на скорость химической реакции.

    6. Что называется катализом и катализатором?

    7. Как классифицируют каталитические реакции?

    8. Что такое ингибиторы?

    9. Что называется химическим равновесием?

    10. Что называется сдвигом химического равновесия?

    11. Сформулируйте принцип Ле Шателье.

    12. В какую сторону сместится равновесие равновесной реакции при увеличении температуры? Давления (если в реакциях принимают участие газы)? Концентрации одного из реагирующих веществ?

    1. 4 Свойства растворов

    1.4. 1 Общая характеристика растворов

    Растворы имеют большое значение в жизни и практической деятельности человека. Так, процессы усвоения пищи человеком и животными связаны с переводом питательных веществ в раствор. Растворами являются все важнейшие физиологические жидкости (кровь, лимфа и т.д.). Производства, в основе которых лежат химические процессы, обычно связаны с использованием растворов.

    Растворы - многокомпонентные гомогенные системы, в которых одно или несколько веществ распределены в виде молекул, атомов или ионов в среде другого вещества - растворителя.

    Раствор может иметь любое агрегатное состояние - твердое, жидкое или газообразное. Всякий раствор состоит из растворенных веществ и растворителя. Обычно растворителем считают тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, раствор соли в воде: соль - растворенное вещество, вода - растворитель). Если оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

    По структуре растворы занимают промежуточное положение между механическими смесями и химическими соединениями. С механическими смесями их роднит переменность состава, а с химическими соединениями - однородность состава по всей фазе и наличие теплового эффекта при образовании. В соответствии с этим первое время существовали две противоборствующие теории: "физическая" и "химическая", каждая из которых отстаивала свои взгляды на строение растворов.

    Современные представления о строении растворов основываются на сольватной теории, выдвинутой Менделеевым и развитой его последователями. Согласно этой теории, в системе при растворении одновременно происходит два процесса: диффузия растворяемого вещества в объеме растворителя (физический процесс) и образования из молекул растворителя и растворяемого вещества нестойких соединений переменного состава - сольватов (химический процесс). Если растворителем служит вода, то эти соединения называют гидратами.

    Образование растворов является процессом самопроизвольным, идущим с увеличением беспорядка системы, т.е. с повышением энтропии. Например, при растворении кристалла система из полностью упорядоченного состояния переходит в менее упорядоченное. При этом с увеличением энтропии (AS > 0) уменьшается свободная энергия системы (AG <0).

    Если раствор образуется из 2 жидкостей, то движущая сила процесса растворения обусловлена стремлением компонентов раствора к выравниванию концентраций, что также приводит к увеличению энтропии, т.е. AS > 0, a AQ < 0. Растворение вещества - процесс обратимый. И как всякий обратный процесс, растворение заканчивается установлением динамического равновесия: нерастворенное вещество - вещество в растворе. Раствор, находящийся в равновесии с растворяющимся веществом, называют насыщенным раствором, а достигнутую предельную концентрацию насыщенного раствора - растворимостью.

    Важнейшей характеристикой раствора является его состав или концентрация компонентов.

    Концентрация растворов - количество растворенного вещества, содержащееся в определенном количестве раствора или растворителя.

    Концентрацию растворов можно выражать по-разному. В химической практике наиболее употребительны следующие способы выражения концентраций:

    1. Массовая доля растворенного вещества (процентная концентрация) - показывает, сколько граммов вещества растворено в 100 г раствора. Она определяется по формуле:

    где W - массовая доля растворенного вещества,

    m в-ва - масса растворенного вещества,

    m р-ра - масса раствора.

    2. Молярная концентрация - показывает, сколько молей растворенного вещества содержится в 1 л раствора.

    3. Моляльная концентрация - показывает, сколько молей вещества содержится в 1 кг растворителя.

    1.4. 2 Растворы газов в жидкостях

    Растворимость газов в жидкостях зависит от их природы, природы растворителя, температуры и давления. Как правило, растворимость газа больше, если растворение сопровождается химическим взаимодействием его с растворителем, и меньше, если при этом химического взаимодействия не происходит. Например, в 1 л воды при н.у. растворяется 0,0002 г водорода, не взаимодействующего с водой, и 875 г аммиака, который реагирует с водой с образованием гидроксида аммония.

    Зависимость растворимости газов от природы растворителя можно показать на следующих примерах. При одинаковых условиях в 1000 г воды растворяется 87,5 г NH 3 , а в 100 г этилового спирта - только 25 г. Растворимость газов в значительной мере зависит от температуры. При повышении температуры растворимость их уменьшается, а при понижении увеличивается. Так при 0 0 С в 100 мл воды растворяется 171 см 3 СО 2 , при 20 0 С - только 87,8 см 3 . Поэтому длительным кипячением можно почти полностью удалить растворенные газы из жидкости, а насыщение жидкостей газом целесообразно проводить при низких температурах.

    Растворимость газа зависит также от давления. Зависимость растворимости газа от давления определяется законом Ге н ри .

    С = к · р, (4.2)

    где С - концентрация газа в растворе,

    к - коэффициент пропорциональности, зависящий от природы жидкости и газа,

    р - давление газа над раствором.

    Масса растворенного газа при постоянной температуре прямо пр о порциональна давлению газа над раств о ром.

    Закон Генри справедлив только для разбавленных растворов в условиях низких давлений. Газы, вступающие во взаимодействие с растворителем NH 3 , SO 2 , HC1 с водой, закону Генри не подчиняются. Их растворимость также увеличивается с повышением давления, но по более сложному закону.

    Проявление закона Генри иллюстрируется образованием обильной пены при откупоривании бутылки с газированной водой или бутылки с шампанским; здесь происходит резкое уменьшение растворимости газа при понижении его парциального давления. Этот же закон объясняет возникновение кессонной болезни. На глубине 40 м ниже уровня моря общее давление составляет 600 кПа и растворимость азота в плазме крови в 9 раз больше, чем на поверхности моря. При быстром подъеме водолаза с глубины растворенный азот выделяется в кровь пузырьками, которые закупоривают кровеносные сосуды, что может привести к тяжелым последствиям.

    Растворимость газа уменьшается при наличии в растворе третьего компонента. Так, в растворах электролитов газы растворяются значительно хуже, чем в чистой воде. Например, в 1 г воды при 0 0 С растворяется 3 · 10 3 м 3 хлора, а в 1 г насыщенного раствора NaCl растворяется в 10 раз меньше, поэтому при хранении хлора над жидкостью воду заменяют на раствор хлорида натрия.

    1.4. 3 Взаимная растворимость жидкостей

    В отличие от растворимости газов в жидкостях растворение жидкости представляет собой более сложный процесс. При смешивании двух жидкостей они могут:

    Растворяться друг в друге в любых соотношениях;

    Практически не растворяться;

    Растворяться ограниченно.

    Взаимная растворимость жидкостей зависит, прежде всего, от их химического строения. Еще алхимиками было замечено, что "подобное растворяется в подобном", т.е. полярное обычно растворимо в полярном, а неполярное - в неполярном. По этой причине вода (полярная жидкость) - хороший растворитель для полярных жидкостей (этилового спирта, уксусной кислоты и т. д.) и совсем не растворяет неполярные жидкости (бензол, керосин и т.п.). Если жидкости отличаются друг от друга по полярности, то они ограниченно растворимы друг в друге. При ограниченной растворимости каждая из жидкостей переходит в другую до определенного предела, в результате образуется двухслойная система. Например, с повышением температуры обычно их взаимная растворимость увеличивается, и при некоторой температуре обе жидкости смешиваются в любых соотношениях, и граница между ними исчезает. Такая температура называется критической .

    Критическая температура, достигаемая нагреванием, называется верхней критической температурой.

    Известны смеси жидкостей, где растворимость уменьшается с повышением температуры. Поэтому критическая температура достигается при понижении температуры и называется нижней критической температ у рой.

    Пользуясь критической температурой растворения, иногда проводят некоторые аналитические определения.

    Особый интерес представляет растворимость различных веществ в двухслойных системах, состоящих из двух нерастворимых жидкостей.

    Если в систему, состоящую из двух несмешивающихся жидкостей, ввести третье вещество, способное растворяться в каждой из них, то растворенное вещество будет распределяться между обеими жидкостями пропорционально своей растворимости в каждой из них.

    Отношение концентраций вещества, распределяющегося между двумя несмешивающимися жидкостями при постоянной температуре, остается постоянным, независимо от общего количества растворенного вещества.

    С 1 /С 2 = к, (4.3)

    где С 1 и С 2 - концентрация растворенного вещества в 1-м и 2-м растворителях,

    ...

    Подобные документы

      Коллоидная химия как наука, изучающая физико-химические свойства гетерогенных, высоко-дисперсных систем и высоко-молекулярных соединений. Производство и методы очищения коллоидных растворов. Применение гелей в пищевой промышленности, косметике и медицине.

      презентация , добавлен 26.01.2015

      Первые практические сведения о коллоидах. Свойства гетерогенных смесей. Соотношение между поверхностью коллоидной частицы и объемом коллоидной частицы. Своеобразие дисперсных систем. Особенности коллоидных растворов. Классификация дисперсных систем.

      презентация , добавлен 17.08.2015

      Основные признаки дисперсных систем, их классификация, свойства и методы получения, диализ (очистка) золей. Определение заряда коллоидной частицы, закономерности электролитной коагуляции, понятие адсорбции на границе раствор-газ, суть теории Ленгмюра.

      методичка , добавлен 14.12.2010

      Основные понятия и законы химии. Классификация неорганических веществ. Периодический закон и Периодическая система элементов Д.И. Менделеева. Основы термодинамических расчетов. Катализ химических реакций. Способы выражения концентрации растворов.

      курс лекций , добавлен 24.06.2015

      Классификация дисперсных систем. Основные факторы устойчивости коллоидных растворов. Методы их получения (диспергирование, конденсация) и очистки (диализ, ультрафильтрация). Мицеллярная теория строения коллоидных частиц. Коагуляция смесями электролитов.

      презентация , добавлен 28.11.2013

      Сущность и определяющие признаки коллоидных систем. Основные свойства и строение растворов такого типа. Характеристика эффекта Тиндаля. Различия гидрозолей и органозолей. Способы образования коллоидных систем, специфические свойства, сфера применения.

      презентация , добавлен 22.05.2014

      Понятие растворов высокомолекулярных соединений (ВМС). Процесс набухания ВМС: его стадии, причины, давление и степень. Вязкость дисперсных систем и растворов ВМС, методы ее измерения. Структурная и относительная вязкость. Коагуляционные структуры.

      реферат , добавлен 22.01.2009

      Константы и параметры, определяющие качественное (фазовое) состояние, количественные характеристики растворов. Виды растворов и их специфические свойства. Способы получения твердых растворов. Особенности растворов с эвтектикой. Растворы газов в жидкостях.

      реферат , добавлен 06.09.2013

      Получение лиофобных коллоидных систем, ее оптические свойства. Определение поверхностного натяжения растворов ПАВ и межфазного натяжения на границе двух несмешивающихся жидкостей сталагмометрическим методом. Коллоидная защита золей растворами ВМС.

      реферат , добавлен 15.02.2016

      Химическая термодинамика. Основные понятия термодинамики. Первое начало термодинамики. Приложения первого начала термодинамики к химическим процессам. Зависимость теплового эффекта реакции от температуры. Закон Кирхгофа. Второе начало термодинамики.

    Понравилась статья? Поделитесь ей